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ABSTRACT: We present a rapid and high-throughput yeast
and flow cytometry based method for predicting kinase
inhibitor resistance mutations and determining kinase peptide
substrate specificity. Despite the widespread success of
targeted kinase inhibitors as cancer therapeutics, resistance
mutations arising within the kinase domain of an oncogenic
target present a major impediment to sustained treatment
efficacy. Our method, which is based on the previously
reported YESS system, recapitulated all validated BCR-ABL1
mutations leading to clinical resistance to the second-
generation inhibitor dasatinib, in addition to identifying
numerous other mutations which have been previously
observed in patients, but not yet validated as drivers of
resistance. Further, we were able to demonstrate that the newer inhibitor ponatinib is effective against the majority of known
single resistance mutations, but ineffective at inhibiting many compound mutants. These results are consistent with preliminary
clinical and in vitro reports, indicating that mutations providing resistance to ponatinib are significantly less common; therefore,
predicting ponatinib will be less susceptible to clinical resistance relative to dasatinib. Using the same yeast-based method, but
with random substrate libraries, we were able to identify consensus peptide substrate preferences for the SRC and LYN kinases.
ABL1 lacked an obvious consensus sequence, so a machine learning algorithm utilizing amino acid covariances was developed
which accurately predicts ABL1 kinase peptide substrates.

The 90 tyrosine kinases of the human proteome play a
central role in essential cellular processes, including

regulation of proliferation, differentiation, and cell death.
Protein tyrosine kinases catalyze the transfer of the gamma
phosphate of adenosine triphosphate (ATP) to the hydroxyl-
containing side chain of tyrosine, propagating cellular signaling
by modulating activity of downstream enzymes or providing
binding sites for phosphotyrosine-specific adaptor domains.
Misregulation of tyrosine kinase activity is a hallmark of many
human cancers, including myeloproliferative disorders and
solid tumors of the lungs, breasts, and colon. Aberrant activity
of tyrosine kinases may occur through activating mutations,
including fusion proteins derived from chromosomal trans-
locations, point mutations, or overexpression.1−3

The success of imatinib, approved by the United States
Food and Drug Administration (FDA) in 2001, demonstrated
the potential of targeted small molecule inhibition of
oncogenic tyrosine kinase domains. Imatinib was first approved
as an inhibitor of BCR-ABL1, a fusion protein resulting from a
chromosomal translocation that is present in nearly all cases of

chronic myelogenous leukemia (CML). The BCR-ABL1
oncogene exhibits constitutive activity and altered subcellular
localization, leading to increased proliferation and genomic
instability. In clinical trials, up to 76% of patients treated with
imatinib achieved a complete cytogenetic response, compared
to 14% of patients treated with the standard of care at the time,
interferon-alpha plus cytarabine.4 Due to a small population of
BCR-ABL-positive cells that persist during treatment, imatinib
therapy must be continued indefinitely. Since the approval of
imatinib in 2001, more than two dozen tyrosine kinase
inhibitors have been approved for therapeutic use. These target
an array of kinases and cancer types, including EGFR and ALK
inhibitors for nonsmall cell lung cancer, HER2 inhibitors for
breast cancer subtypes, and FLT3 inhibitors in acute myeloid
leukemia.5
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Shortly after FDA approval, some patients who achieved an
initial response to imatinib experienced subsequent disease
progression due to point mutations within the kinase domain
of BCR-ABL, which were confirmed by in vitro studies to
confer resistance to imatinib.6 Therefore, a suite of second-
generation drugs was developed to treat imatinib-resistant

patients, including bosutinib, dasatinib, and nilotinib.7,8

Unfortunately, each of these drugs has since been shown to
be susceptible to resistance mutations, both in patients and in
vitro.9 Most recently, the third-generation inhibitor ponatinib
was introduced,10 although due to the frequency of severe side
effects, only for use in patients who have previously failed two

Figure 1. High-throughput screening for tyrosine kinase inhibitor (TKI) resistance mutations and substrate specificity. (A) Schematic of the assay
system: The kinase domain and a kinase substrate peptide fused to Aga2 for display on the cell surface are both expressed with endoplasmic
reticulum (ER) retention signals (FEHDEL) to enhance ER transit time, thus favoring phosphorylation of the Aga2-substrate. Cells expressing
TKI-resistant kinase variants that display phosphorylated substrate are labeled with antiphosphotyrosine fluorescently labeled antibodies and can be
isolated by FACS. (B) FACS of yeast cells expressing ABL1 or ABL1(T315I) mutation, which confers resistance to dasatinib but not ponatinib,
cultured with vehicle (DMSO) or with TKI as shown. (C) Flow cytometry plots of cells expressing SRC or LYN in the presence or absence of
dasatinib, which inhibits both SRC and LYN. (D) Enrichment of cells displaying phosphorylated substrate from a library of random ABL1 cultured
in the presence of 25 μM TKI. Populations were sampled by long-read next-generation sequencing. (E) FACS enrichment of ABL1 kinase
substrates from a combinatorial peptide library (XXYXXX). Cells with surface-displayed phosphorylated substrate are enriched over five rounds of
sorting. Each round, including the unsorted cells, was sampled by short-read next generation sequencing.
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BCR-ABL inhibitors, or are known to harbor the potent T315I
kinase domain mutation.
Current methods for surveying BCR-ABL inhibitor-resistant

mutations rely on mammalian cell culture, either from CML-
derived cells expressing BCR-ABL111,12 or by retroviral
integration of the BCR-ABL1 oncogene into the murine Ba/
F3 cell line.13−17 Endogenous screens rely on increased
mutational rate of CML cell lines, from both BCR-ABL
expression and other genomic defects, to generate population
diversity.11,12 In contrast, retroviral methods generate diversity
through mutagenesis13,14 prior to transfection or in situ
chemical mutagenesis of BCR-ABL1-expressing cells.16,17

Herein we present a fast and efficient yeast-based flow-
cytometry assay to screen for TKI-resistant mutations and
identify kinase substrate sequence preferences. Briefly, a
human kinase domain is coexpressed with a tyrosine-
containing substrate peptide fused to the Aga2 protein for
surface display.18,19 Kinase and substrate are transiently
colocalized in the endoplasmic reticulum (ER), where the
phosphorylation reaction can take place prior to Aga2-
substrate peptide export and eventual display on the yeast
surface. The extent of substrate phosphorylation of the Aga2-
peptide fusion is then detected by staining with fluorophore-
labeled phosphotyrosine-specific antibodies. In media contain-
ing TKIs, cells with reduced kinase activity can be detected and
enriched by fluorescence-activated cell sorting (FACS). As

proof-of-principle, a library of ABL1 kinase mutants was
screened in the presence of either ponatinib or dasatinib. We
report on the facile isolation of TKI-resistant ABL1 mutations
and show that our methodology; (i) recapitulates previously
described dasatinib-resistant mutations isolated from patients;
(ii) reveals novel mutations conferring resistance to
ponatinib.20 Significantly, our results showed that more than
half of the most common ponatinib-resistant variants were
compound mutants, whereas the majority of dasatinib-resistant
variants contained a single mutation. This same yeast screening
technology was also used in a complementary mode to analyze
the substrate specificity of the kinase domains of human SRC,
LYN, and ABL1. In this mode, high-throughput screening of
combinatorial peptide substrate libraries, deep sequencing, and
machine learning were combined to identify peptide substrate
preferences for the SRC and LYN kinases as well as produce a
predictive model for ABL1 specificity.

■ RESULTS AND DISCUSSION
Development of the Yeast Display System. In our

yeast-based system, a kinase domain and the Aga2-substrate
peptide fusion gene constructs are coexpressed with C-terminal
ER-retention signals under the Gal1/10 promoter. The Aga2
fusion protein contains hexa-histidine and FLAG epitope tags
flanking a minimal tyrosine kinase substrate sequence,
AAAAAYAAAAA.21 Coexpression of the kinase and transiting

Figure 2. Tyrosine kinase inhibitor (TKI) resistance mutational landscapes. (A) High frequency ABL1 kinase mutant alleles enriched from cells
grown in the presence of 25 μM dasatinib and sorted for four rounds. Data from 1.8 × 104 high-quality reads from amplicons isolated following
round 4 (B). As in (A) for cells grown with 25 μM ponatinib after six rounds of sorting. Data from 9.9 × 103 high-quality reads from amplicons
following round 6. (C) Mutations present in greater than 1% of mutant sequence reads are mapped onto ABL1 in complex with dasatinib (PDB ID:
2GQG). (D) As in (C), highly represented mutant sequence reads are shown on ABL1 in complex with ponatinib (PDB ID: 3OXZ). (E)
Distribution of high-frequency alleles. Mutant alleles observed at a frequency > 1% are shown as slices, with single mutations in blue and compound
mutations in green. (F) TKI-resistant ABL1 sequence diversity. The number of sequences accounting for 80% of mutant reads is indicated. (G, H)
Effect of inhibitors on the growth of Ba/F3 cells expressing select BCR-ABL1 variants selected from yeast-based screening. Data are reported as
ratio of IC50 for cells expressing BCR-ABL1 mutants over wild-type (see also Figure S5).
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substrate in the ER results in phosphorylation of the substrate
tyrosine, utilizing endogenous ATP. Ultimately, the substrate is
transported to the yeast surface18 and probed with
phosphotyrosine and epitope tag antibodies for flow cytometry
(Figure 1A). Cells expressing active ABL1 and substrate
exhibit high antiphosphotyrosine (pY) and when analyzed by
FACS. Culturing in TKI-supplemented media results in
decreased phosphorylation, allowing for enrichment of
inhibitor-resistant mutants (Figures 1B and S1). In addition
to ABL1, the kinase domains of the proto-oncogenes SRC and
LYN are also active in YESS and inhibited by dasatinib,
indicating the generalizability of the method (Figure 1C). Cells
expressing inhibitor-resistant kinase mutants or active sub-
strates are enriched by FACS (Figure 1D and E).
Discovery of Inhibitor-Resistant Mutations. To screen

for mutations that confer TKI resistance, a 3.2 × 107 member
error-prone PCR ABL1 kinase library (error rate of 0.05%) was
screened for activity in the presence of 25 μM dasatinib or
ponatinib (Figure 1D). Previously, a titration with increasing
concentrations of the inhibitors determined that 25 μM was
required to observe strong inhibition with the yeast system.
This relatively high concentration is presumably required due
to diminished diffusion into the yeast ER (Figure S2). Libraries
cultured with 25 μM inhibitor were sorted for high anti-pY/
FITC ratios (Figure 1D). Greater than 107 cells were sorted in
the first round. In subsequent rounds, previous sorting
bottlenecks were exceeded by 10-fold to preserve diversity.
The fraction of pY-positive cells in dasatinib-treated cultures

increased from 1.8% in the unsorted pool to 87.7% after six
rounds of sorting. Phosphotyrosine-positive cells in ponatinib-
treated cultures increased from 0.31% in the unsorted pool to
57.9% of cells after four rounds of sorting. Populations were
sampled by PacBio sequencing, yielding approximately 104

sequences per population. Reads were aligned to the wild-type
ABL1 kinase domain and filtered to remove those with
insertions or deletions within 5 nucleotides of substitutions.
The two sorted pools were highly polarized compared to the
unsorted pool, with the ponatinib-treated pool more polarized

and enriched for compound mutations (Figures 2E, S3, and
S4). In the dasatinib-treated population, the top 636 variants
accounted for 80% of the mutant sequences, while in the
ponatinib-treated population the top 71 variants comprised
nearly 80% of the mutant sequences (Figure 2F). In the
ponatinib-sorted library, 46% of all mutants were compound
mutants, representing a 4-fold increase over the unsorted pool
(Figure S4). In addition, 6 of the 10 most frequent ponatinib-
resistant variants contained two or more mutations, including
the previously described Y253H/E255V amino acid sub-
stitutions isolated from a resistant patient, whereas none of the
top 10 dasatinib-selected variants were compound mutants
(Figure 2E).
The library was prepared with a low error rate (0.05%) so

that greater than 90% of the library contained one or zero
mutations,and 9.4% contained double mutations (Figure S4).
Combined with the large library size (107), the ABL1 library
was predicted to contain essentially complete coverage of
single nucleotide substitutions and a significant fraction of
possible double mutants.
We further characterized seven kinase domain variants for

resistance to dasatinib and ponatinib in the murine Ba/F3 pro-
B cell line (Figures 2G and S5). Three ponatinib-selected
variants with compound mutations and the corresponding four
variants with single mutations alone were assayed to investigate
the relative importance of the compound mutations for
ponatinib resistance. All three of the variants with double
mutations (E255V/G303R, E255V/D325N, E255V/T392I)
assayed had a significantly higher IC50 value for ponatinib than
wild-type, validating our FACS data and selection strategy.
Note that nanomolar concentrations of the inhibitors were
used in these IC50 value determinations, consistent with known
IC50 values derived from mammalian cell measurements. In our
experiments, the E255V mutation alone conferred a 2.6-fold
increase in IC50 for ponatinib, while the D325N mutation
alone was not significantly different from wild-type. However,
when combined, the E255V/D325N compound mutation
combination resulted in an IC50 value 18-fold higher than wild-

Figure 3. Sequence specificity of ABL1, SRC, and LYN kinase domains. Combinatorial libraries of the form XXYXXX, where X is encoded by the
degenerate NNS codon. Results are plotted in the pLogo visualization tool (plogo.uconn.edu),23 which calculates over- and under-representation of
amino acids compared to a background set. Additionally, enriched amino acids may be “fixed” to examine covariance between substrate residues
(displayed in gray) (A) ABL1 does not exhibit stringent specificity at the single amino acid level. Covariance between residues in the ABL1
substrate data set was further used to computationally predict substrate phosphorylation (Figure 4). (B, C) SRC and LYN kinase domains have
broadly similar substrate specificity, but sampling bottlenecks prevented a similar analysis to the ABL1 data.
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type, indicating that the effect of these two mutations was
more than additive. Interestingly, the IC50 values for variants
with the E255V/T392I and E255V/G303R compound
mutations were not significantly different than the E225 V
and G303R mutations alone, respectively (Figures 2G and S5).
Furthermore, Western blots for phospho-CrkII Y22122 showed
that both E255V and E255V/D325N retained activity in the
presence of 40 nM ponatinib, while wild-type BCR-ABL1 is
inhibited (Figure S6).
Kinase Peptide Substrate Profiling. The yeast-based

methodology was used in a complementary mode by screening
a library of substrate peptide sequences for phosphorylation by
wild-type kinase. Using this apparoach we were able to profile
substrate sequence preferences for the SRC, LYN, and ABL1
kinases. Substrate libraries were constructed using degenerate
codon primers surrounding a fixed tyrosine residue
(XXYXXX), estimated to contain approximately 5 × 107

transformants per library. In the first round of sorting, both
SRC and LYN phosphorylated substrates in just 0.4% and 0.1%
of induced cells, respectively. In constract, ABL1 phosphory-
lated substrates in approximately 9% of induced cells in the
initial round of sorting (Figure 1E). At the start of the fifth
round of sorting, the percentage of phosphotyrosine-positive
cells were 68%, 39%, and 70% for the SRC, LYN, and ABL1
libraries, respectively. For each population, plasmids were
extracted from 10-times the population diversity. After quality
filtering and barcode splitting, each ABL1 kinase sorting round
contained between 9.3 × 105 and 3 × 106 sequence reads,
corresponding to 3.5 × 105−8.4 × 105 unique substrate DNA
sequences. SRC and LYN sequencing results contained
between 3.4 × 105 and 2.0 × 106 sequences per round, with
the exception of the second round of LYN substrate sorting,
which contained only 1.7 × 104 DNA sequences. Amino acid
enrichment relative to the presorted library are displayed in
Figure 3.
For the ABL1 sequencing results, we applied a machine

learning algorithm utilizing amino acid covariances to predict
substrate sequences beyond the depth of the sequencing data.
From both the presorted and sorted data, frequencies of each
amino acid and each combination of two and three amino
acids were calculated. For any given sequence of the form
XXYXXX, a model score was calculated by computing the
product of the conditional probabilities for each three amino
acid combination, the conditional probabilities of each two
amino acid combination, and the prior probabilities of each
single amino acid. The log-likelihood score is the ratio of this
calculation from the sorted and unsorted rounds. When
calculated from the round three sorted data, log-likelihood
scores for all possible peptides (3.2 × 106) ranged from −80 to
+55. To validate that these scores predict phosphorylation by
ABL1, 32 peptides were cloned individually into the YESS
system and the extent of substrate phosphorylation was
measured by FACS (Figure 4). It should be noted that 24 of
these 32 peptides did not occur in any of the sequencing data
and were therefore inferred to be substrates by amino acid
covariance. To validate these results in vitro, phosphorylation
of 12 synthetic peptides ABL1 was measured by LC-MS. Each
of the seven peptides which were phosphorylated in the YESS
system were also phosphorylated in the in vitro reaction, and
each of the five peptides which were not phosphorylated in
YESS were not phosphorylated in vitro.
The yeast-based approach presented here is unique in that it

is capable of both the rapid and effective screening of tyrosine

kinase inhibitor resistance as well as determining peptide
substrate specificity in a comprehensive fashion. First, we
investigated how well the new method can identify relative
susceptibilities to resistance mutations elicited by different
tyrosine kinase inhibitors. We sought to develop a facile
method to identify, early in the drug development cycle, those
drug candidates with the best potential for long-term efficacy.
In contrast to mammalian cell-based techniques,6,13−17,24 our
yeast-based method can screen all possible single mutations
and a significant portion of double (compound) mutations in
under 2 weeks. Additionally, by directly assaying the
phosphorylation of a synthetic substrate, our screen is more
broadly applicable than mammalian screens, each of which
requires a unique cell line with an intrinsic, selectable
phenotype of kinase activity. Importantly, our yeast kinase
libraries also offer the distinct advantage of being amenable to
aliquoting and long-term storage, removing the need to
produce a mutant library each time a new screen is undertaken.
The large data sets generated by our approach therefore
uniquely allow accurate comparisons between multiple
inhibitors screened in parallel against an identical pool of
kinase mutations. Finally, beyond the extensive work with
ABL1, our yeast-based inhibitor assay has been applied
successfully to SRC and LYN kinases, strongly supporting
the general applicability of the method (Figure 1C).
The mutations recovered from our yeast-based screen

reported here using dasatinib and ponatinib can be compared
to mutations in inhibitor-resistant patients treated for CML.25

In the case of dasatinib, our data recapitulated all eight of the
previously described single mutations that lead to disease
relapse in the clinic and have been verified as significantly
resistant in vitro. Of these eight clinical mutations, four were
observed in our top five and seven were observed among our
top 20 most sequenced dasatinib resistance-conferring
mutations.20 In addition, many mutations seen from deep-
sequencing of patients are also observed in our data, though
the role of these mutations in disease relapse has not yet been
reported. Note that none of the most common dasatinib
variants were compound mutations. Although less clinical data

Figure 4. Model score accurately predicts substrate phosphorylation
by ABL1 kinase domain. Thirty two peptides, ranging from the
highest to lowest model score of all possible 5-mer peptides, assayed
in yeast. Phosphorylation was observed for all peptides with a model
score greater than 30. Furthermore, 24 of these 32 peptides were not
present in the sequencing data set. Twelve peptides were further
analyzed by a binary in vitro phosphorylation assay. Peptides which
were phosphorylated in vitro are indicated by green dots, and those
where no phosphopeptide was detected are indicated by red dots.
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has been reported so far, preliminary indications are that
ponatinib retains efficacy against an array of known imatinib-
resistant single mutants, but is still susceptible to compound
mutations such as Y253H/E255V in CML patients20,26−28

(Figure 2B). Our ponatinib screening data is consistent with
these initial clinical findings in that 6 of our top 10 most
common ponatinib-resistant variants contained two or more
mutations, including Y253H/E255V. Note that our yeast-
based screen utilized only soluble kinase domains, so we were
not able to examine any clinical mutations outside of these
regions of the kinases.
Beyond just recapitulating clinical data, our yeast-based

screening data collectively predict that ponatinib is generally
less susceptible to resistance compared to dasatinib. In
particular, the isolated ponatinib-resistant population was
both more highly polarized and more enriched for compound
mutations, indicating that single mutations are generally less
likely to confer resistance to ponatinib compared with
dasatinib. For example, in our unsorted library treated with
25 μM ponatinib, just 0.31% of cells expressed resistant
mutants, indicating that these mutations were relatively rare
compared to the dasatinib-treated sample (Figure 1D).
Similarly, following sorting, the ponatinib-treated library was
more highly polarized than the dasatinib-treated library (Figure
2F). Finally, the proportion of compound mutations in the
ponatinib-screened library overall (>46%) and in the most
common sequence reads (Figure 2A) was significantly higher
than the dasatinib screen (35%, Figure 2B). Validation of these
results in the murine Ba/F3 cell line showed that each of three
compound mutations were at least as resistant as the E255V
mutation, and the E255V/D325N compound mutation is 7-
fold more resistant than either single mutation alone (Figure
2G).
Note that most clinical studies to date have involved patients

treated sequentially with imatinib and second-line TKIs,
including dasatinib and ponatinib, following the appearance
of imatinib resistance.26,29 For that reason, many clinical
isolates obtained from patients treated with ponatonib or
dasatinib also contain the T315I mutation that is known to
arise during first-line treatment. Because we only investigated
ponatinib alone, it is not surprising that T315I mutations were
not found to dominate in our studies. Nevertheless, it is
interesting that the single inhibitor approach reported here did
identify several compound mutations in the case of ponatinib
treatment. Perhaps due to this difference in inhibitor exposure
in the current experiment versus clinical practice, we also
identified many dasatinib-resistant single mutations and some
ponatinib-resistant compound mutations not yet reported
based on clinical data.
We next investigated the second application of our new

yeast-based method involving the analysis of the active-site
peptide sequence preferences of tyrosine kinases. To
accomplish this we used our yeast system in a different
mode, retaining the sequence of the wild-type tyrosine kinase
but screening against a large random library of substrates.
Using this approach, consensus sequence preferences were
obtained for the SRC and LYN kinases, but the ABL1 kinase
yielded preferences that were far less obvious. Applying
machine learning to millions of ABL1 peptide substrates
allowed us to predict accurately whether a peptide will be
phosphorylated, regardless of it being present in the
sequencing data. Although high-throughput screening has
been utilized for kinase substrate screening, prior to the

present study it had yet to be combined with next-generation
sequencing and machine learning, which in this study allows us
to predict accurately whether a peptide may be phosphorylated
by ABL1 kinase in vitro.
The results reported here have established the utility of our

new yeast-based method for two aspects of kinase biology:
peptide substrate specificity and inhibitor resistance. First, the
system was able to reproduce and therefore likely predict
clinical findings of TKI resistance, providing a facile and
inexpensive screen for predicting potency to known and novel
resistance mutations early in the development cycle of next-
generation clinical TKI candidates. Furthermore, by combining
our high-throughput screening with next generation sequenc-
ing of kinase substrates we are able to predict accurately kinase
substrate peptides, an advance which could add greatly to the
understanding of tyrosine kinase biology.
This report should be considered as just the beginning of

what can be accomplished with YESS in the tyrosine kinase
arena. We are currently investigating other FDA-approved
TKIs. Ideally, we will be able to create a comprehensive
database of resistance mutations for all of the approvided TKIs
that will be useful for clinicians attempting to choose the best
alternative TKI once a given clinical resistance mutation has
been identified in their patient. Such a database would also aid
those developing next generation TKIs, providing a rapid
method to screen numerous candidate molecules for resistance
early in the drug development cycle. Finally, we also hope to
learn more about the substrate specificities of tyrosine kinase
active sites to aid in the basic understanding of these important
enzymes.
At a higher level, as the list of pharmaceuticals such as TKIs

used to treat disease continues to grow, it is important that we
shift attention toward finding new drug candidates with
improved long-term efficacy including the ability to evade
common resistance mechanisms.30,31 Assays such as the one
presented here will be able to greatly assist in these efforts.

■ METHODS
Vector Construction. Amino acids 237−630 of human ABL1

isoform 1b were cloned into the pESD vector under the GAL10/
GAL1 bidirectional promoter in place of TEV protease.18,19 TEV
protease substrate was replaced with a minimal kinase substrate
(AAAAAYAAAAA).21 Yeast receptor adhesion subunit Aga2, ER
retention signal, and hexahistidine and FLAG epitope tags were
retained from the pESD vector.18,19

Yeast-Based Inhibitor Resistance Assay. ABL1 wild-type and
T315I mutant expression was induced by growth in SG-UT32 medium
containing 125 uM dasatinib, ponatinib, or DMSO for 40 h at 20 °C.
Cells were washed three times with TBST+BSA (TBS + 0.5% BSA +
0.05% Tween20), then stained with anti-His6-FITC (Thermo Fisher,
MA1-81891) and antiphosphotyrosine-PE (BioLegend) at 4 °C for
30 min, followed by three washes with TBST+BSA. FACS analysis
was performed with the FACS Aria IIu or FACSCalibur (BD
Biosciences).

Error-Prone Library Construction. ABL1 kinase domain was
amplified with an error-prone variant of KOD polymerase to generate
a pool of random mutants. Vector was prepared by digestion of
pESD-ABL1 plasmid with SalI-HF, XhoI, and NcoI-HF. Electro-
competent EBY100 were prepared as described previously.18,32 In
each of three 2 mm electroporation cuvettes (Thermo Fisher
Scientific), 350 μL of electrocompetent EBY100 cells was combined
with 10 μg of ABL1 error-prone PCR product and 3 μg of digested
vector to a maximum volume of 400 μL. Library size was estimated by
dilution series of transformed cells plated on SD-UT agar.
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Library Screening by FACS. Library cells were induced by
growth in 10 mL of SG-UT with 25 μM inhibitor (Selleckchem) or an
equivalent volume of DMSO. Wild-type ABL1 with inhibitor or
DMSO used to determine the location of the sorting gates.
Phosphotyrosine+/His6+ cells were collected and re-sorted, then
transferred to SD-UT medium for growth at 30 °C until dense, 1−2
days. Subsequent rounds were performed identically until phospho-
tyrosine+/His6+ cells accounted for 60−90% of the population.
Substrate Library Construction. Primers encoding the

XXYXXX peptide, where X encoded by the NNS degenerate codon,
were used to amplify the C-terminal half of the Aga2-substrate fusion
gene. Overlap extension PCR with the N-terminal half of the Aga2-
substrate fusion created an amplicon encoding the entire gene, which
was cotransformed with EcoRI and PacI-digested parental vector into
the EBY100 yeast display strain. Transformation efficiency was
assayed as described above. Kinase and substrate expression were
induced by 48 h growth at 20 °C in SG-UT medium.
High-Throughput Sequencing of Inhibitor Resistance

Libraries. Plasmids were recovered from saturated overnight cultures
using the ZymoPrep II kit (Zymo Research). DNA from unsorted,
dasatinib-sorted, and ponatinib-sorted libraries was barcoded by PCR.
After barcoding PCR, concentrations were quantified by Qbit
(Thermo Fisher). Pooled samples were sequenced with the PacBio
RSII at the Arizona Genomics Institute at the University of Arizona.
High-Throughput Sequencing of Substrate Libraries.

Plasmids from each round were isolated from 10-fold the estimated
population diversity using the ZymoPrep II kit (Zymo Research).
Substrate genes were amplified using primers containing 5-mer
barcodes, followed by purification by agarose gel extraction and
pooling for sequencing. Full MiSeq 2 × 250 bp (ABL1) or 1 × 300 bp
(SRC and LYN) runs were performed by the University of Texas
Genomic Sequencing and Analysis Facility (GSAF). Sequence reads
were filtered for quality reads (qphred > 25) with the fastx toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/).
Substrate Sequence Analysis. Sequences were aligned to wild-

type ABL1 kinase domain using an implementation of NCBI BLAST
on the Texas Advanced Computing Core. Mutations in aligned
sequences were then translated and compiled into a database.
Sequences were counted and assembled into Python dictionaries,
which were then used to calculated frequencies of amino acids and
conditional frequencies of all possible two and three amino acid
combinations.
Ba/F3 Validation of Resistance Mutants. Mutants were

generated on a pDONR Bcr-Abl p210 template using QuickChange
site-directed mutagenesis (Agilent) and transferred to the pfMIG
retroviral expression vector using Gateway cloning (Thermo Fisher
Scientific). The murine pro B-cell line Ba/F3 (DSMZ ACC-300) was
retrovirally transduced with the human Bcr-Abl p210 wildtype and
mutant cDNAs as previously described.33 The transduced cells were
FACS-sorted for GFP (coexpressed with Bcr-Abl) and Bcr-Abl
expression levels were checked by immunoblotting.
Transduced BaF3 cells were grown in RPMI medium (Lonza)

supplemented with 10% FBS, 100 U mL−1 penicillin, and 100 μg
mL−1 streptomycin. Cells thawed from freezer stocks were passaged
twice in media additionally supplemented with 10 ng mL−1 IL-3
(Peprotech), followed by two passages in the absence of IL-3. Then 5
×104 cells were seeded in 100 μL in each well of a 96-well plate. Next,
50 μL of inhibitor in RPMI + FBS + Pen/Strep was added to each
well. Cell viability was assayed after 24 h using CellTiter Glo
(Promega) according to the manufacturer’s instructions, except that
the reagent was diluted 1:5 in PBS. Luminescence was detected using
a plate reader (Tecan). Titration curves were fitted using a four-
parameter dose−response curve using GraphPad Prism. Immunoblot-
ting was performed with Phospho-CrkII Tyr211 and GAPDH
antibodies (Cell Signaling Technologies) according to manufacturer’s
instructions after 2 h incubation with inhibitor. Membranes were
incubated with anti-Rabbit IgG (Biolegend) for 1 h at RT, then
visualized using the G:BOX system (Syngene)
In Vitro Validation of ABL1 Substrates. A concentration of 1

μM peptide, where the indicated sequence is flanked by three alanines

(GenScript), was incubated with 100 nM GST-ABL1 (ProQinase)
overnight at 25 °C in 50 mM Tris HCl pH 8.0, 150 mM NaCl, and
500 μM ATP. Reactions were quenched at 98 °C for 2 min. LC-MS
was performed on an Agilent 6130 instrument.30,31
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