
NAME (Print):	 Chemistry 320M/328M Dr. Brent Iverson
SIGNATURE:	 9th Homework November 5, 2025
Please print the first three letters of your last name in the three boxes	

1. (5 or 6 pts) The following reactions all involve chemistry of haloalkanes. Fill in the box above the arrow with the mechanism that will be followed (S_N2 , E2, etc.). Then draw only the predominant product or products and please remember that you must draw the correct stereoisomers. For $S_N1/E1$ reactions you must draw all significant products (including all stereoisomers).

NaOH

G.

H. Br +
$$CH_3O^{\bigcirc}Na^{\oplus}$$

 $H_{1/1...}^{\square}C^{\square}$ CH_2CH_3

 $S_N 2$

K.

 $S_N 2$

$$C_{\bigotimes_{\mathbf{N}}}$$

2. (20 pts) Consider the following statements that refer S_N1 , S_N2 , E1, E2, or a **radical chain reaction** mechanism. Fill in the circles to indicate to which mechanism(s) each statement applies.

A. A reaction in which the predominant product is predicted by Zaitsev's rule.	\bigcirc S_N^2 \bigcirc S_N^1	E2 E1	O Radical chain reaction
B. A reaction observed when tertiary haloalkanes react with any nucleophile that is not a very weak base.	\bigcirc S_N^2 \bigcirc S_N^1	● E2 ○ E1	O Radical chain reaction
C. A reaction that involves an anti-periplanar transition state.	\bigcirc S_N^2 \bigcirc S_N^1	● E2 ○ E1	O Radical chain reaction
D. A reaction that involves initiation, propagation and termination steps.	\bigcirc $S_N 2$ \bigcirc $S_N 1$	○ E2 ○ E1	Radical chain reaction
E. A reaction that is favored for secondary haloalkanes when a nucleophile that is NOT a strong base and is also NOT a very weak base is used	S_N^2 OS_N^1	○ E2 ○ E1	O Radical chain reaction
F. A reaction mechanism that involves a carbocation intermediate.	$\begin{array}{c} \bigcirc S_{N}2 \\ \hline \bigcirc S_{N}1 \end{array}$	○ E2● E1	O Radical chain reaction
G. A reaction mechanism that involves only a transition state, no intermediate.	S_N^2 OS_N^1	● E2 ○ E1	O Radical chain reaction
H. A reaction that causes InVERSiON of sterechemistry at the site of reaction.	S_N^2 S_N^1	○ E2 ○ E1	O Radical chain reaction
I. A reaction that will occur when Br_2 and light are used with an alkane.	\bigcirc $S_N 2$ \bigcirc $S_N 1$	○ E2 ○ E1	Radical chain reaction
J. A reaction that involves initiation, propagation and termination steps. Yep, this one is here twice because it is important!	\bigcirc $S_N 2$ \bigcirc $S_N 1$	○ E2 ○ E1	Radical chain reaction
K. A reaction obeserved when secondary haloalkanes react with a nucleophile that is a very weak base (as solvent).	\bigcirc $S_N 2$ \bigcirc $S_N 1$	○ E2● E1	O Radical chain reaction