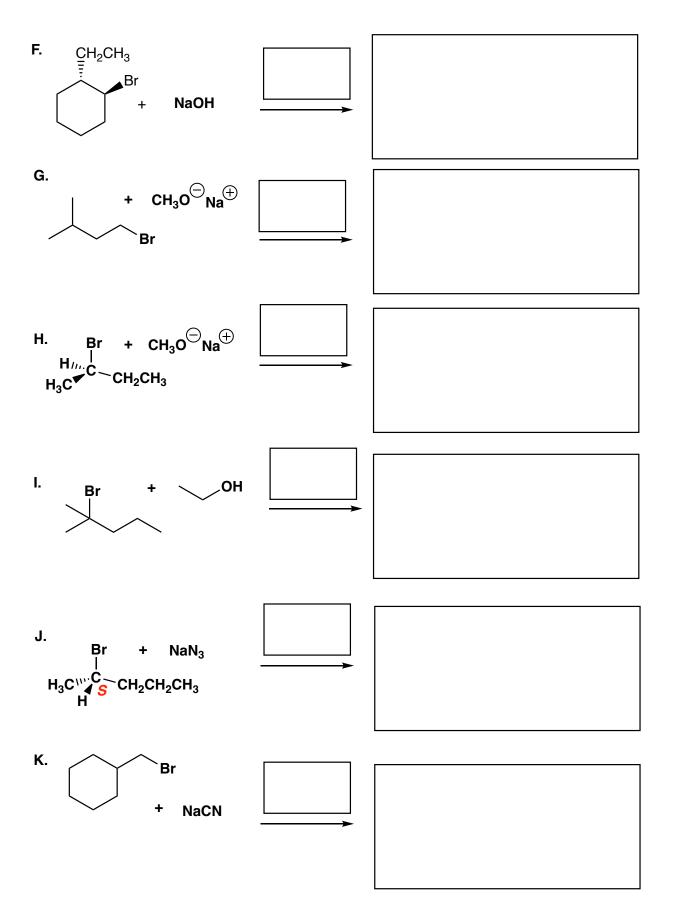

NAME (Print): _____


SIGNATURE: _____

Chemistry 320M/328M Dr. Brent Iverson 9th Homework November 6, 2024

Please print the first three letters of your last name in the three boxes

1. (5 or 6 pts) The following reactions all involve chemistry of haloalkanes. Fill in the box above the arrow with the mechanism that will be followed (S_N2 , E2, etc.). Then draw only the predominant product or products and please remember that you must draw the correct stereoisomers. For $S_N1/E1$ reactions you must draw all significant products (including all stereoisomers).

2. (20 pts) Consider the following statements that refer $S_N 1$, $S_N 2$, E1, E2, or a radical chain reaction mechanism. Fill in the circles to indicate to which mechanism(s) each statement applies.

A. A reaction in which the predominant product is predicted by Zaitsev's rule.	$\bigcirc S_N 2 \\ \bigcirc S_N 1$	O E2 O E1	O Radical chain reaction
B. A reaction observed when tertiary haloalkanes react with any nucleophile that is not a very weak base.	$OS_N 2$ $OS_N 1$	O E2 O E1	O Radical chain reaction
C. A reaction that involves an anti-periplanar transition state.	$\bigcirc S_N 2$ $\bigcirc S_N 1$	O E2 O E1	O Radical chain reaction
D. A reaction that involves initiation, propagation and termination steps.	$\begin{array}{c} O S_N 2 \\ O S_N 1 \end{array}$	O E2 O E1	○ Radical chain reaction
E. A reaction that is favored for secondary haloalkanes when a nucleophile that is NOT a strong base and is also NOT a very weak base is used	$\begin{array}{c} OS_N^{}2\\ OS_N^{}1\end{array}$	O E2 O E1	○ Radical chain reaction
F. A reaction mechanism that involves a carbocation intermediate.	$\bigcirc S_N 2 \\ \bigcirc S_N 1$	O E2 O E1	O Radical chain reaction
G. A reaction mechanism that involves only a transition state, no intermediate.	$\bigcirc S_N 2 \\ \bigcirc S_N 1$	O E2 O E1	O Radical chain reaction
H. A reaction that causes InVERSiON of sterechemistry at the site of reaction.	OS_N^2 OS_N^1	O E2 O E1	O Radical chain reaction
I. A reaction that will occur when Br_2 and light are used with an alkane.	OS_N^2 OS_N^1	O E2 O E1	○ Radical chain reaction
J. A reaction that involves initiation, propagation and termination steps.	$OS_N^2 OS_N^2$	O E2 O E1	O Radical chain reaction
K. A reaction observed when secondary haloalkanes react with a nucleophile that is a very weak base (as solvent).	$\bigcirc S_N 2$ $\bigcirc S_N 1$	O E2 O E1	O Radical chain reaction