MTW6 10－3
－＂Optical active＂
－Acid and Base
If a molecule is chiral，it rotates the plane of plane polarized list in a concentration dependent manner．

Two enantiomens will rotate polarized light in the opposite direction， but to the equal extents

If R－enantiomen rotate 41.7° to clockwise（ ${ }^{\prime \prime} t^{\prime \prime}$ ）
S－enentiomer rotate 4.7° to counterclockwise（＂一＂）
canted din cos

$$
\text { -Rギナ", Rキ"一" } \rightarrow \text { " } た \text { " }
$$

A racemic mixture wont rotate rotate the plane of polarized light
G $1: 1$ mixture of 2 ehantiomers
A compound is＂optical active＂if it rotates the plane of polarized light．
－racemic mixtures and mess compounds are not optical active．

Acid and Base

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\text { Acid }=\text { proton Donor } \\
\text { Base }
\end{array}\right\} \begin{array}{c}
\text { proton } \\
\text { Acceptor }
\end{array}\right\} \text { Bronsted } \begin{array}{c}
\text { theory }
\end{array} \\
& \begin{array}{c}
\mathrm{NaOH} \\
\text { base }
\end{array} \rightleftharpoons \begin{array}{c}
\mathrm{H}-\mathrm{OH}+\mathrm{NaCl} \\
\text { conjugate } \\
\text { acid }
\end{array} \\
& \begin{array}{c}
\text { conjugate } \\
\text { acid }
\end{array}
\end{aligned}
$$

we can describe mathematically＂how far＂a reaction proceed by defining an eanilbrium constant．

$$
\text { Keq }=\frac{[B]}{[A]}=\frac{\text { products }}{\text { reactants }} \quad \text { (with known } p K_{a}, K_{e q}=p K_{10} \text { product }-p K_{a} \text { nectar, }
$$

Ken tells us which side (starting materials/left side/reactants)
(products/risht side)
is favored at eq.

If $K_{e q}=1 \rightarrow$ each side same amount of A and B

$$
\begin{aligned}
& K_{\text {eq }} \rightarrow \infty \rightarrow \text { No } A \text { present, all } B \\
& \begin{aligned}
& K_{\text {eq }}=0.00000 \rightarrow \\
& 00000 \\
& 00000
\end{aligned}
\end{aligned}
$$

For acids and bases: $H-A+\Theta_{B} \rightleftharpoons H-B+A^{\theta}$

$$
K_{A}=\frac{[H-B][A \partial]}{[H-A][: B \partial]}
$$

$$
p K_{a}=20 \quad p K_{a}=-55
$$

since k_{4} rages from 10^{-20} to 10^{55}
c) we took the log scale, so the \# is smaller.

$$
p K_{a}=-\log K_{A}
$$

K_{A} and pK tell us how much an acid will be deprotonated us. protonated at a specific pH

Ls
PK and K_{A} reflect a given acid's intrinsic ability to protonate the $\frac{\text { base }}{L}$ usually H_{20} for $p K_{a} / K_{a}$
$\underset{\substack{\text { Smaller } \\ \text { (lower) }}}{ } \mathrm{p} \mathrm{K}_{\mathrm{a}}$ values \longrightarrow Stronger acid $\Rightarrow \begin{gathered}\text { mole stable anion } \\ \text { more stable (weak) }\end{gathered}$ (mande negative) more stable (weak) conjugate base

$$
\begin{aligned}
& H-\ddot{C}\left|: \rightleftharpoons H^{\oplus}+\ddot{C}\right| \theta \\
& \text { PK a } K_{a}=-7
\end{aligned}
$$

Q.2. favors formation of the WEAKER ACID
L for a given pair of "acids" the smaller/lower the $P K_{a}$ the stronger the acid
the stronger the acid
\rightarrow A stronger acid will react to form a mae $\frac{\text { Stable }}{\text { anion }}$
(deprotonated)
A given acid will be protonated if the PH of the solution is ress(lange) than the pKa of the acid

$$
H-A+H-\ddot{O}-H \rightleftharpoons A: \theta+H-\underset{\substack{1 \\ H \\ H}}{\oplus}
$$

If $p H=p K_{a}, \quad[H-A]=\left[A_{i} \theta\right]$
50:50 protonated vs. deprotonared
$p H>p K_{a}, \quad[H-A]<[A: \partial]$
He acid $[(H-A)$ is mostly deprotohated
pH<pKa, $[H-A]>\left[A:{ }^{\ominus}\right]$
the acid $(H-A)$ is mostly protonated

$\mathrm{H}_{3} \mathrm{C}-\ddot{\mathrm{N}}-\mathrm{H}$	Acid ?	The molemlar environment (pH)
H	or	determines whether a molecular
	Base ?	functions as an acid or base

It depends
The number of H -atoms on sp 3 N -atom is changing w/ PH
T) recall lower $\mathrm{PH}=$ mote acidic environment $=a$ lot of $\mathrm{H}^{\mathrm{+}}$ around

If there are a lot of protons in solution (acidic)
N will be bonded to mole protons $\rightarrow \underset{H}{H-N}$ than it would be if there are less $1 H^{\oplus} \rightarrow$

$$
\begin{aligned}
& H-\ddot{N}-H \\
& \dot{H} \\
& \text { or } H-\tilde{N}^{\ominus}-H
\end{aligned}
$$

Let's follow 100 amine $\left(R-\ddot{\sim} H_{2}\right)$ molecules in a solution as we raise pH from of (ven acidic) to pH 50 (Super basic)

Let's follow 100 amine $\left(R-\ddot{\sim} H_{2}\right)$ molecules in a solution as we raise pH from ϕ (very acidic) to pH 50 (Super basic)
consider too relaxant oKas: R- $\mathrm{PH}_{3} \quad \mathrm{PKa} \sim 10 \mathrm{E}$

$$
\mathrm{R}-\mathrm{NH}_{2} \quad \mathrm{p} \mathrm{~K}_{a} \sim 40 \mathrm{C}
$$

oka table
compound aka (conjugate base)
$\mathrm{H}_{3} \mathrm{O}^{\oplus}$
-1.7
$\mathrm{H}_{2} \mathrm{O}$
PH >-1.7, mostly
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{4} \mathrm{~N}^{\oplus}$
9.2
$\mathrm{H}_{3} \ddot{\mathrm{~N}}$
$\mathrm{PH}>9.2$, rosily $\mathrm{H}_{3} \mathrm{~N}$
pH く 9.2 , mostly $\mathrm{H}_{4} \mathrm{~N}^{\oplus}$
In Human body: PH ~7
Generic Ambo Acid:

$$
\begin{array}{lc}
\text { PK a } & \\
R-\text { 思 } H_{3} & \sim 9.2 \\
R-C O O H & 3-5
\end{array}
$$

Amine is Protonated (a) PH 7
PH

Carsorylic, acis deprotonctal(a) PH 7

$$
2 H>P K_{a}
$$

more stable Anion has $\theta \longleftarrow$ "full negative charge"
(1) on a mode E.N. atom (a cross a row in periodic table)
(2) On an atom $w /$ moe S-character $\left(S P D S P^{2}\right.$) $S P^{3}$) (mostly for comparing
 nesctive chase on ()
(2) On an atom $w /$ more S-character $\left.(S p\rangle S p^{2}\right) S p^{3}$) (mostly for Comparing
(3) On a larger atom (down a column)
(4) Stablized by resonance delocatization
(5) stabilized by inductive effect from nearby E.N. atoms
e.s: $1=$ most acidic $\quad 4=$ least acidic

(2) Altemetively, look them up in pk table:

	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}	$\dddot{\sim} \mathrm{H}_{3}$	$\mathrm{H}_{2} \mathrm{~S}$
p Ka	15.7	51	40	$8-9$
	2	4	3	1

es.

4
2

3

- Resonance is in play in all of them!
- negative change is not directly on a halogen atom, so ${ }^{\text {rule }} \# 3$ does not apply.

Inductive effect: "Pulling" of e^{Θ} density through σ-bonds by E.N. atoms / groups.
Q. 5

$$
H-C \equiv C-H
$$

R酋夏

$$
H-C \equiv C: \theta
$$

$s p^{2}$
${ }_{5} p^{3}$
why 1 is mote stesle then 2:
3 at
(1) the carorylate has θ on anove E.N. atom (ruve \#1)
(2) the carborylate has resonance stableliation crue \# 4)
(3) al thangh alkyne has sp hybridicotion, but because it's a nesative charge on carbon,

$00 \cdot \theta$
Vs

1
2
3

