\qquad
\qquad
Chemistry 320N
Dr. Brent Iverson
1st Midterm
Feb. 18, 2016

Please print the first three letters of your LAST name in the three boxes

Please Note: This test may be a bit long, but there is a reason. I would like to give you a lot of little questions, so you can find ones you can answer and show me what you know, rather than just a few questions that may be testing the one thing you forgot. I recommend you look the exam over and answer the questions you are sure of first, then go back and try to figure out the rest. Also make sure to look at the point totals on the questions as a guide to help budget your time.

> You must have your answers written in PERMANENT ink if you want a regrade!!!! This means no test written in pencil or ERASABLE INK or red ink will be regraded.

Please note: We routinely xerox a number of exams following initial grading to guard against receiving altered answers during the regrading process.

FINALLY, DUE TO SOME UNFORTUNATE RECENT INCIDENCTS YOU ARE NOT ALLOWED TO INTERACT WITH YOUR CELL PHONE IN ANY WAY. IF YOU TOUCH YOUR CELL PHONE DURING THE EXAM YOU WILL GET A "0" NO MATTER WHAT YOU ARE DOING WITH THE PHONE. PUT IT AWAY AND LEAVE IT THERE!!!

Page	Points	
1		(18)
2		(80)
10		(12)
11		(27)
12		(22)
13		(15)
14		(17)
15		(15)
16		(5)
17		(16)
18		(10)
19		(10)
20		(19)
21		(19)
Total		(285)

Student Honor Code

"As a student of The University of Texas at Austin, I shall abide by the core values of the University and uphold academic integrity."

Type ar Hydroyen 	Chembent Shitt (6) ${ }^{*}$	Type bi"Hydrogen ($\mathrm{R}=\mathrm{alkyl}, \mathrm{Ar}=\mathrm{aryl}$)	Chemicnl Shift (8) ${ }^{\text {" }}$
		$\mathrm{RCH}_{2} \mathrm{OH}$	3,4-4,0
$\mathrm{P}_{2} \mathrm{NH}$	0,5-5,0	$\mathrm{FCH}_{2} \mathrm{Br}^{7}$	3.4-3.6
POH	0.5-6.0		3.6-3,8
RCH_{3}	0,8-1.0		
$\mathrm{PCH}_{2} \mathrm{R}$	1.2-1.4		3.7-3.9
RyCH	1,4-1.7		$4.1-4.7$
$\mathrm{P}_{2} \mathrm{C}=\mathrm{CRCH}_{2}$	1.6-2.6		
	2.01-3.0	$\mathrm{RCH}_{2} \mathrm{~F}$	4.4-4.5
		ArOH	4.5-4.7
	2.1-2.3	$\mathrm{P}_{2} \mathrm{C}=\mathrm{CH}_{2}$	4.6-5,0
$\stackrel{O}{\mathrm{CHCH}_{2} \mathrm{R}}$	2.2-2.6	$\begin{gathered} \mathrm{R}_{2} \mathrm{C}=\mathrm{CHR} \\ \mathrm{Q} \end{gathered}$	5.0.5.7
ArCH_{3}	2,2-2.5	$\mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}$	3,3-4,0
$\mathrm{PCH}_{2} \mathrm{NR}_{2}$	2.3-2,8	$\stackrel{C l}{\mathrm{RC}}$	9.5-10.1
$\mathrm{FCH}_{2} \mathrm{l}$	3.1.4.7	R	
$\mathrm{COH}_{2} \mathrm{OR}$	3.3-4.0	Cl	10-13

*Values ure refutive to tetrumethysiline. Other atoms within the molecule may onuse the signal to appear outside these ranges.

\qquad

1. (14 points) Suppose a relative of yours is having an MRI. In no more than four sentences, explain to them what is happening when they have the MRI scan. We wil be looking for a minumum of 7 key points here.

The popular medical diagnostic technique of magnetic resonance imaging (MRI) is based on the same principles as NMR, namely the flipping (i.e. resonance) of nuclear spins of protons by radio firequency irradiation when a patient is placed in a strong magnetic field. Magnetic field gradients are used to gain imaging information, and rotation of the gradient around the center of the object gives imaging in an entire plane (i.e. slice inside patient). In an MRI image, you are looking at individual slices that when stacked make up the three-dimensional image of relative amounts of protons, especially the protons from water and fat, in the different tissues.
2. (4 points) What is the most important question in organic chemistry?

Where are the electrons?

> A mutant frog species discovered in poluted ponds. Its Latin name is:
> 5,10-di-tert-butyl-6,9-
> dineopentyl-1,4,5,6,7,8,9,10-octahydrobenzo[8]annulene-2,3dione
\qquad

DO NOT TEAR OUT THIS PAGE!!

We do this to improve grading accuracy. You must write the answers for the questions on the next several pages on this single sheet.

Question 3, page 3 (12 pts) True false qustions. As appropriate, circle True or False in each space corresponding to the statements on page 2.

3.1 True False	3.11 True False
3.2 True False	3.12 True False
3.3 True False	3.13 True False
3.4 True False	3.14 True False
3.5 True False	3.15 True False
3.6 True False	3.16 True False
3.7 True False	3.17 True False
3.8 True False	3.18 True False
3.9 True False	3.19 True False
3.10 True False	3.20 True False

Question 4, page 4 (14 pts) Write the word that best completes the sentences.

4.1	Equivalent	
4.2	electron	
4.3	geminal	
4.4 (two words)	coupling constants	
4.5	flipping	
4.6 (two words)	Fourier transform	

Question 5, page 4 (12 pts) Write the the number of peaks expected for the signals corresponding to the H atoms indicated by the arrows.

5.412
(20 pts) These are the NMR spectra questions. Write the letter (A-E) of the structure that corresponds to the NMR structure shown.
6.

8. C
9. D

Question 10, page 9 (8 pts) Circle the correct answer.
10.1 Nucleophiles Electrophiles
10.2 Nucleophile Protons

Question 11, page 9 (12 pts) For each, circle whether the indicated structure is a nucleophile or an electrophile.

	Electroph
-	Electro
11.6 Nucleo	
析	Electrophile
11	L
11.9 Nucleophile	Electro
.10 Nucleophile	Electrophile
11.11 Nucleophile	Electrophile
11.12 Nucleophile	Electrophil

3. (1 pt. each) On page 2, indicate whether the following statements are True or False (we will not grade any writing on this page).
3.1 The " N " in NMR stands for "nuclear". True
3.2 Nuclei with spin quantum number $1 / 2$ are quantized in one of two orientations, " $+1 / 2$ " (lower energy) or "-1/2"(higher energy) in the presence of an external magnetic field. True
3.3 Energy of exactly the correct frequency (turns out to be radio frequency) can be absorbed by a nucleus and excite it from the lower energy $+1 / 2$ spin state to the higher energy $-1 / 2$ spin state, a process referred to as resonance. True
3.4 The difference in energy between the $+1 / 2$ and $-1 / 2$ nuclear spin states is proportional to the strength of the magnetic field felt by the nucleus. True
3.5 Electron density is induced to circulate in a strong external magnetic field, which in turn produces a magnetic field that reinforces the external magnetic field. False
3.6 Electron density is induced to circulate in a strong external magnetic field, which in turn produces a magnetic field that opposes the external magnetic field. True
3.7 More electron density around a nucleus is referred to as more shielding.True
3.8 More electron density around a nucleus is referred to as less shielding.False
3.9 The more shielded the nucleus, the larger the chemical shift. False
3.10 The more shielded the nucleus, the smaller the chemical shift. True
3.11 The location of a given signal with respect to a standard, TMS, is called chemical shift (δ) and has the units ppm (parts per million). True
3.12 On an NMR spectrum, the scale is plotted with larger values of chemical shift toward the left side.True
3.13 On an NMR spectrum, the scale is plotted with larger values of chemical shift toward the right side ${ }^{\text {False }}$
3.14 On an NMR spectrum, all things being equal, a more shielded nucleus will give rise to a signal further to the righifrue
3.15 On an NMR spectrum, all things being equal, a more shielded nucleus will give rise to a signal further to the leffalse
3.16 The splitting of a $-\mathrm{CH}_{2}$ - group adjacent to a chiral center will usually be a singlet due to exchange, (catalyzed by acid). False
3.17 The splitting of a $-\mathrm{CH}_{2}-$ group adjacent to a chiral center is more complex than $\mathrm{n}+1$. True
3.18 The splitting of a $-\mathrm{CH}_{2^{-}}$group adjacent to a chiral center is always a doublet of triplets False
3.19 The H atoms of relatively acidic functional groups (alcohols, carboxylic acids) exchange rapidly, so they often do not split adjacent protons. True
3.20 The H atoms of relatively acidic functional groups (alcohols, carboxylic acids) rotate rapidly, so they are always split according to the $\mathrm{n}+1$ rule. False
4. (2 pt each) In the appropriate space on page 2 , fill in each blank with the word or two words that best completes the following sentences about NMR. We will not grade any writing on this page.
$4.1 \quad$ Equivalent hydrogens have the same NMR signal
4.2 Electronegative atoms, pi bonds and hybridization state of carbon atoms attached to an H atom influence shielding in predictable ways by removing differing amounts of \qquad density around adjacent nuclei
4.3 Non-equivalent H atoms on the same C atom can split each other (called \qquad coupling), for example on alkenes or small rings.
4.4 (two words are needed here) For alkyl groups with freely rotating C atoms, complex splittings simplify because \qquad constants \qquad ("J") are all about the same.
4.5 You can acquire an NMR spectrum by flipping all the nuclear spins instantaneously with a multi-frequency pulse, then monitor the rate at which the spins "relax" back to the $+1 / 2$ spin state.
4.6 (two words are needed here) A mathematical algorithm called \qquad
Fourier transform is used to reconstruct individual resonance frequencies and peak areas for the different equivalent sets of protons so the spectra can be plotted.
5. (3 pts each) In the appropriate space on page 2 , fill in each blank with the number of peaks you expect to see for the signals corresponding to the \mathbf{H} atom(s) indicated by the arrows.

6. (5 pts) On page 2, write the letter of the structure that corresponds to the NMR structure below.

Signature \qquad Pg 6
7. (5 pts) On page 2, write the letter of the structure that corresponds to the NMR structure below.

Signature \qquad $\operatorname{Pg} 7$
8. (5 pts) On page 2, write the letter of the structure that corresponds to the NMR structure below.

A

D

$\mathbf{E}^{\mathbf{O H}}$

\qquad $\operatorname{Pg} 8$
9. (5 pts) This is a very difficult one!! On page 2, write the letter of the structure that corresponds to the NMR structure below.

10. (8 pts) Most of carbonyl chemistry can be predicted based on the properties of the $\mathrm{C}=\mathrm{O}$ group. On page 2, write the appropriate answer in each space.

11. (12 pts) Being able to recognize the chemical personality of different species is one of the most important skills you can develop in Organic Chemistry. On page 2 state whether each structure is a nucleophile or electrophile. Note that these species might be acids or bases in certain situations, but we will ignore that for this problem.
11.1

$11.7 \mathbf{B r}^{\ominus}$
11.8

11.2

11.3

11.9

11.10

11.4

11.5

11.12

11.6

\qquad
12. (4 pts each) Write an acceptable IUPAC name or draw a structural formula for the following molecules:
A.

(4R,6S)-4-chloro-6-methyloctanal
B.

3,3,6,6-tetramethyl-5-oxoheptanal
C. In the box, draw the structure corresponding to the following IUPAC name.
(E)-5-methyl-4-hepten-3-one

14. (27 pts. total) Complete the mechanism for the following Wittig reaction. Be sure to show arrows to indicate movement of all electrons, write all lone pairs, all formal charges, and all the products for each step. Remember, I said all the products for each step. IF A NEW CHIRAL CENTER IS CREATED MARK IT WITH AN ASTERISK AND WRITE "RACEMIC" IF APPROPRIATE. I realize these directions are complex, so please read them again to make sure you know what we want.

2)

 (Draw both contributing structures)

Racemic
4 Make a bond

Products (No reason to draw any contributing structures)

In the boxes provided adjacent to the arrows, write which of the four basic mechanistic elements are involved (i.e. "Make a bond", "Add a proton", etc.)
15. (20 pts. total) Complete the mechanism for the following two Grignard reactions. Be sure to show arrows to indicate movement of all electrons, write all lone pairs, all formal charges, and all the products for each step. Remember, I said all the products for each step. IF A NEW CHIRAL CENTER IS CREATED MARK IT WITH AN ASTERISK AND WRITE "RACEMIC" IF APPROPRIATE.I realize these directions are complex, so please read them again to make sure you know what we want.

In the boxes provided adjacent to the arrows, write which of the four basic mechanistic elements are involved (i.e. "Make a bond", "Add a proton", etc.)
\qquad
\qquad
16. ($\mathbf{3}$ or 5 pts.) Write the predominant product or products that will occur for each transformation. If a new chiral center is created and a racemic mixture is formed, you must draw both enantiomers and write "racemic" under the structure. Use wedges (-) and dashes (.......וI) to indicate stereochemistry. To get full credit, you only need to write the the major organic product for these. You do not have to worry about the other products.

\qquad
\qquad
17. ($\mathbf{3}$ or 5 pts.) Write the predominant product or products that will occur for each transformation. If a new chiral center is created and a racemic mixture is formed, you must draw both enantiomers and write "racemic" under the structure. Use wedges (-) and dashes ($. . . \mathrm{w} . \mathrm{II}$) to indicate stereochemistry. To get full credit, you only need to write the the major organic product for these. You do not have to worry about the other products.

2) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

\qquad
18. ($\mathbf{3 , 4} \mathbf{~ o r} 5 \mathbf{p t s}$.) Write the predominant product or products that will occur for each transformation. If a new chiral center is created and a racemic mixture is formed, you must draw both enantiomers and write "racemic" under the structure. Use wedges (-) and dashes ($\quad . . .11 / 1)$) to indicate stereochemistry. To get full credit, you only need to write the the major organic product for these. You do not have to worry about the other products.

2) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

$\mathrm{P}(\mathrm{Ph})_{3}$

This is not racemic, the original chiral center of the epoxide is retained in the product and no new chiral centers are created.

racemic

1)

2) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

This is not racemic because these are diastereomers, not enantiomers. The (S) chiral center of each starting material is retained in the products, and one new chiral center is created in the reaction
19. (5 pts) Here are a series of syntheticsteps that produce a complex product from simple starting materials. You only need to draw the final product in the box. If a racemic mixture is formed, you need to use wedges and dashes to indicate stereochemistry, making sure to and write "racemic" if appropriate. You can use the bottom of the page for scratch paper. Note we will only grade the final product structure so be careful!

20. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If you make a racemic mixture, you can either draw both enantiomers or simply draw one structure and label all chiral centers with an asterisk (*). Either way, you must write racemic if appropriate.

(13 pts) All of the carbon atoms of the products must come from the starting materials.

Recognize that the product has 8 carbons, and the starting materials have 6 and 2 , respectively. Therefore they must combine implying a new $\mathrm{C}=\mathrm{C}$ bond as indicated. Notice further that the new $\mathrm{C}=\mathrm{C}$ is Z . At this point, it is reasonable to assume a Wittig reaction was used to make this product. Propose a combination of an aldehyde and Wittig reagent as the last step. Recognize that the acetaldehyde can be created in two steps from ethene via hydration to make ethanol followed by oxidation with PCC. Recognize that the 6carbon Wittig reagent can be made in three steps from 4-methyl-1-pentene by a non-Markovinikov hydrobromination to give the primary bromoalkane followed by the usual Wittig reagent synthesis steps. Note that it is also correct to reverse the aldehyde and Wittig reagent as shown below.

21. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If you make a racemic mixture, you can either draw both enantiomers or simply draw one structure and label all chiral centers with an asterisk (*). Either way, you must write racemic if appropriate.
(10 pts) All of the carbon atoms of the products must come from the starting materials.

Recognize that the product has 8 carbons, and the starting material has 4 . Therefore there must be a new C-C bond linking two four-carbon units as indicated. Notice also, that the OH group of the product is on a carbon next to the carbon making the new $\mathrm{C}-\mathrm{C}$ bond, the KRE of an epoxide reacting with a Grignard reagent. Predict the last step to be the reaction between 2-ethyloxirane with butylGrignard. Recognize the butylGrignard as coming from 1-butene via reaction with HBr in the presence of ROOR and heat or light to give 1-bromobutane, followed by the usual reaction with Mg° in ether. Recognize that 2-ethyloxiran can be made from 1-butene via reaction with a peracid such as aceticperacid or MCPBA.
22. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If you make a racemic mixture, you can either draw both enantiomers or simply draw one structure and label all chiral centers with an asterisk (*). Either way, you must write racemic if appropriate.
(10 pts) All of the carbon atoms of the products must come from the starting materials.

Recognize that the product has 7 carbons, but the starting material has 4 . Therefore there must be a new C-C bond linking one three-carbon unit with a four-carbon unit as indicated. Note there are two different possible locations for the new C - C bond, but assume the OH group of the product is on a carbon making the new C-C bond, the KRE of an aldehyde reacting with a Grignard reagent. Recognize the required butylGrignard as coming from 1-butene via reaction with HBr in the presence of ROOR and heat or light followed by the usual reaction of Mg° in ether. Recognize that propanal can be made from 1-butene via reaction with O_{3}, the only reaction you know capable of breaking a carbon-carbon bond to generate a three-carbon unit.
23. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If you make a racemic mixture, you can either draw both enantiomers or simply draw one structure and label all chiral centers with an asterisk (*). Either way, you must write racemic if appropriate.
(19 pts) All of the carbon atoms of the products must come from the starting materials.

Recognize that the product has 8 carbons, and the starting materials have 5,2 and 1. Therefore there must be two new C-C bonds. The most logical places for these are adjacent to the carbonyl and OH groups as shown. The most logical KRE is for a new C-C bond on a carbon with an OH group, the KRE for a Grignard reaction. Propose a Grignard reaction between formaldehyde (given starting material) and a protected Grignard as shown. Recognize the protected Grignard as coming from 7-bromo-3heptanone. This may be the hardest part of the synthesis, noticing that the required 7-bromo-3heptanone can be derived from 6-heptene-3-one through non-Markovnikov hydrobromination. The 6-heptene-3-one comes from oxidation of the corresponding alcohol 6-hepten-3-ol. The 6-hepten-3-ol is the product of a Grignard reaction between the 4-pentenal starting material and a two-carbon Grignard reagent derived from the bromoethane starting material.
24. (10 pts) You have not seen the following reaction before, it comes from a much later chapter. The NMR spectrum of the predominant product is shown. Using your growing intuition about chemical reactivity as well as the NMR, draw the structure of the product of this reaction.

25. (9 pts) Reactions in context: Following is the second to the last step in the synthesis of the very important drug Tamoxifen, used to treat breast cancer. Draw the product of the reaction.

