Here are the keys to understanding mechanisms in 320N!!

1) There are basically four different mechanisms elements that make up the steps of carbonyl reactions.
 A) Make a bond between a nucleophile and an electrophile
 B) Break a bond to give stable molecules or ions
 C) Add a proton
 D) Take a proton away

2) These same four mechanism elements describe most of the other mechanisms you have/will learn!!! (Yes, organic chemistry really is this simple if you look at it this way!!)

There are basically four different mechanisms that describe the vast majority of carbonyl reactions, which are different combinations/ordering of the four mechanism elements listed above. In this class, I have termed them "Mechanism A", "Mechanism B", "Mechanism C", and "Mechanism D". They all involve a nucleophile attacking the partially positively charged carbon atom of the carbonyl to create a tetrahedral intermediate. Different reaction mechanisms are distinguished by the timing of protonation of the oxygen atom as well as the presence or absence of a leaving group attached to the carbonyl.

Four Mechanisms for the Reaction of Nucleophiles with Carbonyl Compounds

MECHANISM A: Reaction with a Strong Nucleophile

Step 1: Make a new bond between a nucleophile and electrophile

\[
\text{Nu}^+ + R-\overset{\text{O}}{\text{C}}-Y \rightarrow [R-\overset{\text{O}}{\text{C}}-Y]^+ \quad \text{Tetrahedral Intermediate}
\]

Step 2: Add a proton

\[
[R-\overset{\text{O}}{\text{C}}-Y]^+ \rightarrow R-\overset{\text{O}}{\text{C}}-Y^+ + \text{Nu}
\]

Here H-A is a weak acid such as water

MECHANISM B: Reaction with a Strong Nucleophile When "Y" is a Good Leaving Group (-OR, -Cl, etc.).

Step 1: Make a new bond between a nucleophile and electrophile

\[
\text{Nu}^+ + R-\overset{\text{O}}{\text{C}}-Y \rightarrow [R-\overset{\text{O}}{\text{C}}-Y]^+ \quad \text{Tetrahedral Intermediate}
\]

Step 2: Break a bond to give stable molecules or ions

\[
[R-\overset{\text{O}}{\text{C}}-Y]^+ \rightarrow R-\overset{\text{O}}{\text{C}}-Y + \text{Nu}
\]

MECHANISM C: Reaction with a Weak Nucleophile

Step 1: Make a new bond between a nucleophile and electrophile

\[
\text{Nu}^+ + R-\overset{\text{O}}{\text{C}}-Y \rightarrow [R-\overset{\text{O}}{\text{C}}-Y]^+ \quad \text{Tetrahedral Intermediate}
\]

Step 2: Add a proton and take a proton away

\[
[R-\overset{\text{O}}{\text{C}}-Y]^+ \rightarrow R-\overset{\text{O}}{\text{C}}-Y + \text{Nu}
\]

Note: this proton transfer can actually take place in two steps, i.e. Add a proton then Take a proton away or vice versa.
MECHANISM D: Reaction with a Weak Nucleophile in the Presence of Acid (H-A)

Step 1 Add a proton

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\]

\[\xrightarrow{H^{+}} \]

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\] + \[\text{:A}^{+}\]

Step 2 Make a new bond between a nucleophile and electrophile

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\]

\[\xrightarrow{\text{H-Nuc.}} \]

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\] + \[\text{:A}^{-}\]

Tetrahedral Intermediate

Step 3 Take a proton away

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\]

\[\xrightarrow{\text{H-A}} \]

\[
\begin{align*}
\text{O} & \quad \underset{H}{\overset{A}{\text{H}}} \\
\text{R} & \quad \overset{C}{\overset{Y}{\text{C}}} \\
\end{align*}
\] + \[\text{H-A}\]

Tetrahedral Intermediate

Here H-A is a strong acid such as H-Cl