Microscopic Reversibilty: Acid Catalyzed Ester Hydrolysis-Fischer Esterification
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Acid Chlorides Reacting with Amines
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Grignard Reacting with Esters
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Reduction of Esters with LiAlH
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Reduction of Amides with LiAlH,
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Note: In this reaction the chemist opens the flask and adds water in a second step that quenches any
excess LiAlH,. Therefore, you need a second step to add water when using this reaction in synthesis
even though it is not shown in the mechanism above.
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Note: In this reaction the chemist opens the flask and adds water in a second step that quenches any
excess LiAlH,. Therefore, you need a second step to add water when using this reaction in synthesis
even though it is not shown in the mechanism above.
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Interconversion of Carboxylic Acid Derivatives
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Gleevec - Novartis (54.65 Billion in sales in 2015). A kinase inhibitor that is a first of its kind
pill capable of treating certain blood cancers with only limited side effects. It was designed to
combat leukemias with the relatively common “Philadelphia chromosome” (BCR-ABL kinase

gene fusion)



Weaker bases are favored at equilibrium

Compound pPK,
H-CI 7 Strongest Acid
- (Weakest conjugate base)

Carboxylic acids" R_(Iéo_H 3-5 ¢

Il 1
p-Dicarbonyls™ RC—CH,‘,ER' 10

(") (0]
f-Ketoesters™ RC—CHngR' "

o)

Diesters * oél, Lor 13
p-Diesters ROC~-CH,-COR A) Reactions are favored (i.e. have a motive) if they lead to formation of a weaker acid and/or weaker
Water HOH 15.7 base.
Alcohols RCH,OH 15-19 B) Checking pKa values can predict if a reaction has a motive even if there are other steps besides a
0 proton transfer.
= |

Acid chlorides RCH:'AC' 16 C) Recall that the conjugate base of a stronger acid (lower pKa) is a weaker base.

@ D) Check the pK's of the conjugate acid of the bases on either side of the equation. Lower pKA value
Aldehydes* RCH,-CH 18-20 corresponds to stronger acid of the conjugate acid, and thus weaker conjugate base. The base with a
stronger conjugate acid (lower pKa value) will be the weaker base and will be favored at equilibrium.

O
Ketones ™ RCHz-gR' 18-20 E) Another way to look at it is that the base that is favored at equilibrium is the one that has the more
0 stabilizied anion, i.e. the one with the charge spread around more (electronegative) atoms.
Il
Esters™ RCH,-COR' 23-25 F) Above is a pKa table that we will refer to often.
Terminal alkynes RC=C-—H 25
LDA H-N(i<CsH;), 40
Terminal alkenes R,C—C—H 44
H L
Weakest Acid
Alkanes CH3CHo-H o1 (Strongest conjugate
base)

*These have resonance stabilized anions



Enolates as nucleophiles

A) Enolates are resonance stabilized, with a partial negative charge on carbon and oxygen.

B) Enolates are nucleophiles, so they could react at either the carbon atom or oxygen atom. The
partial negative charges give them the opportunity to react at either the carbon or oxygen.

C) Reaction at the carbon atom gives the final product a C=0 bond, while reaction at the oxygen atom
gives the final product a C=C bond. However, C=0 bonds are stronger than C=C bonds, so the
motive is to react at the carbon atom with most electrophiles.



Aldol Reaction
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