

Enantiomers or Diastereomers?

 4 spin molecule

Enantiomers (Section 3.2) Stereoisomers that are nonsuperposable mirror images of each other; refers to a relationship between pairs of objects.

Diastereomers (Section 3.4A) Stereoisomer that are not mirror images of each other; refers to relationships among two or more objects.

Which pair of molecules could be a racemic mixture?

or

Racemic mixture (Section 3.7C) A mixture of equal amounts of two enantiomers.

Weaker bases are favored at equilibrium

Compound		pK ${ }_{\text {a }}$	
	$\mathrm{H}-\mathrm{Cl}$	-7	
Carboxylic acids*		3-5	
β-Dicarbonyls*		10	
β-Ketoesters*		11	
β-Diesters*		13	
Water	HOH	15.7	
Alcohols	$\mathrm{RCH}_{2} \mathrm{OH}$	15-19	
Acid chlorides*	$\mathrm{RCH}_{2}-\stackrel{\\|}{\mathrm{CCl}}$	16	
Aldehydes*		18-20	
Ketones*		18-20	
Esters\%		23-25	
Terminal alkynes	$\mathrm{RC} \equiv \mathrm{C}-\mathrm{H}$	25	
LDA	$\mathrm{H}-\mathrm{N}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}$	40	
Terminal alkenes	$\mathrm{R}_{2} \mathrm{C}=\underset{\mathrm{H}}{\mathrm{C}}-\mathrm{H}$	44	
Alkanes	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	51	

Strongest Acid (Weakest conjugate base)

A) Reactions are favored (i.e. have a motive) if they lead to formation of a weaker acid and/or weaker base.
B) Checking pKa values can predict if a reaction has a motive even if there are other steps besides a proton transfer.
C) Recall that the conjugate base of a stronger acid (lower pKa) is a weaker base.
D) Check the pK 's of the conjugate acid of the bases on either side of the equation. Lower pKA value corresponds to stronger acid of the conjugate acid, and thus weaker conjugate base. The base with a stronger conjugate acid (lower pK a value) will be the weaker base and will be favored at equilibrium.
E) Another way to look at it is that the base that is favored at equilibrium is the one that has the more stabilizied anion, i.e. the one with the charge spread around more (electronegative) atoms.
F) Above is a pKa table that we will refer to often

Weakest Acid (Strongest conjugate base)
*These have resonance stabilized anions

Enolates as nucleophiles

A) Enolates are resonance stabilized, with a partial negative charge on carbon and oxygen.
B) Enolates are nucleophiles, so they could react at either the carbon atom or oxygen atom. The partial negative charges give them the opportunity to react at either the carbon or oxygen.
C) Reaction at the carbon atom gives the final product a $\mathrm{C}=\mathrm{O}$ bond, while reaction at the oxygen atom gives the final product a $\mathrm{C}=\mathrm{C}$ bond. However, $\mathrm{C}=\mathrm{O}$ bonds are stronger than $\mathrm{C}=\mathrm{C}$ bonds, so the motive is to react at the carbon atom with most electrophiles.

$K R E \rightarrow \beta$-hydroxy aldehyde
with a new $C-C$ bond between the aldehyde α and β carbons

Mechanism A
3) The aldol reaction is favorable for aldehydes but NOT for ketones
4) The reaction can make two new chiral centers

$$
\int \begin{gathered}
H O^{e} \\
(\text { catalytic })
\end{gathered}
$$

Racemic

In mild acid with some heating, the aldol product will dehydrate to give an α, β-unsaturated aldehyde.

Note: The following mechanism is NOT the simplest you might think of, but it is the one with the lowest energy intermediates (no carbocations, etc.) so this is the correct mechanism

Acid catalyzed dehydration

Aldol product Chemist adds acid and heat

z
Not much of the Z product is formed became it has significantly move steric strain than E

New
bond
en

Both E and Z are formed

Time Capsule \rightarrow The product is conjugated and therefore stable

Time Capsule \rightarrow The product can be used in 9 - hae reaction

When you run a "mixed" aldol reaction, you generally get far too many reaction products to be useful.

Example

2 stereoisomers

4 stereoisomers

Strategic Workaround: Use an aldehyde with no α hydrogens and a ketone
\rightarrow The aldehyde cannot make an enolate, while the ketone can but that enolate can only make a stable product with the aldehyde.

(No α-hydrogen so no enolate can be made)

(Not chiral)

Another aldehyde that does NOT have any - hydrogens

Beta-dicarbonyls have alpha-hydrogens that are extra acidic

The C-H hydrogen atoms between two carbonyl groups are aven more acidic than normal a hydrogens because the resulting anion is double resonance stabilized. The above electrostatic potential surface shows how the negative charge (red color) is spread over all three atoms as predicted by the three resonance contributing structures.

$$
\text { Claisen Condensation } \rightarrow \text { "Aldol with } \begin{gathered}
\text { Esters" }
\end{gathered}
$$

Θ

$$
: \mathrm{O}-\mathrm{CH}_{3}
$$

The R group of the base must match the ester!!

Draw both enantiomers
(Chemist opens flask
New $C-C$

This is a much more stable anion compared to eOCH_{3}, providing a strong driving force (motive) for the Claisen condensation reaction
$K R E \rightarrow \beta$-ketoester with a new $C-C$ bond between the α and β carbon atoms.

Important point \rightarrow The ${ }^{\ominus} \mathrm{OCH}_{3}$ is consumed during the reaction!

The Claisen Condensation reaction is NOT catalytic in base like the aldol reaction!

1.0 equivalent equivalent
0.5 equivalent

Another way to say it:

$$
2 \mathrm{CH}_{3}-\mathrm{C}^{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{3}+{ }^{-} \mathrm{CH}_{3} \xrightarrow[\text { 2) } \mathrm{H}_{3} \oplus]{\text { mild }} \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}^{\mathrm{C}}-\mathrm{OCH}_{3}
$$

