VOLUNTEGR!

Tutoring Refugees to Understand English

T.R.U.E is a service organization that tutors English to refugees for one hour every week.

Lesson for Today:
"The Song"
Strong nucleophiles react directly at the electrophilic C atom of carbonyls to make a bond as the carbonyl ir bond breaks. A proton is added to the O atom.

MECHANISM A!

Grignard Reagent Reacting with an Aldehyde or Ketone

Key Recognition Element (KRE):
$-O H$ group attached the same C abm as a new $C-C$ bond

$\xrightarrow{\text { 1) } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}}$
2) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

Carboxyliz Acid!

Alkyne Anion Reacting with an Aldehyde or Ketone

Mechanism A

Key Recognition Element (KRE):
OH group on the carbon that makes a new $C-C$ bond to an $s p C$ aton (alkyne)

 C aton because HCN Reacting with an Aldehyde or Ketone C abm makes stronger
that mods

$$
: \mathrm{N}=\mathrm{C}-\mathrm{H} \rightleftharpoons: \mathrm{N} \equiv \mathrm{C}:+\mathrm{H}^{(}
$$

Key Recognition Element (KRE):
Cyanohydrin $\rightarrow \mathrm{OH}$ on a C atom that made a new $C-C$ bond to $-C$ EN:

Time capsule \rightarrow cyanohydrins can be hydrolyzed in $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}$ to give α-hydroxyacids

This is getting boring.

It is time for a TLJIST

Wittig Reaction

Racemic

"Four-membered ring intermediate"
Key Recognition Element (KRE):
Alkene \rightarrow New $C=C$ where the $C=0$ was!
E vs. $Z \rightarrow$ Which product alkene?

1) With alky) Witlig reagents, the Z alkene product predominates

$$
\begin{array}{r}
\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\
\qquad \begin{array}{l}
1)^{1}(\mathrm{Ph})_{3} \mathrm{Pi} \\
2)_{n-B u L i}
\end{array}
\end{array}
$$

$$
\int z \text { product }
$$

Z

2) When using Witting reagents that have a carbonyl) attached to the C atom that is bonded to the $P \oplus$ atom - E alkenes predominate

Detour -Hydrogenation of aldehydes and
ketones
H_{2} with $\mathrm{Pd}^{0}, \mathrm{Pt}^{0}$ or Ni^{0} reduces aldehydes and ketones to alcohols \rightarrow the τ bond reacts the same in $C=C$ and $C=0$

We now return to our regularly scheduled discussion of Mechanism A

Meta) Hydride Reduction
\Rightarrow Reduce $\mathrm{C}=0$ but not $\mathrm{C}=\mathrm{C}$

$L_{i} \oplus H$

NaBH_{4}
LiAlH_{4}
How to think about the reagent:

You can think of NaBH as a Lewis base-Lewis acid complex between hydride (H°) and BH_{3}

Sodium Borohydride Reacting with an Aldehyde or Ketone

Key Recognition Element (KRE):

Products

$\xrightarrow[\text { 2) } \mathrm{H}_{2} \mathrm{O}]{\text { 1) } \mathrm{LiAlH}_{4}}$

