$$
\begin{aligned}
& \text { Differences Between the Reagents } \\
& \text { Alkyllithium Reagents } \rightarrow \text { extremely } \\
& \text { basic- } \\
& \text { limits their } \\
& \text { use }
\end{aligned}
$$

(you are not responsible for
writing these)

Watch the new video called "Gilman Reagents Explained" after hitting "Helpful Short Videos" on the main course web page (7th from the top on the left column)

$$
\begin{gathered}
\text { Synthesis } \rightarrow \text { New } C-C \text { bonds! } \rightarrow \\
\rightarrow \text { Generate more complex } \\
\text { molecules from simpler } \\
\text { ones. }
\end{gathered}
$$

1) Retrosyuthetic Analysis \rightarrow

$$
\begin{aligned}
& \text { Work backwards from } \\
& \text { the product. }
\end{aligned}
$$

2) Count the number of carbon atoms in the starting material versus the product \longrightarrow Allows you to identify the location of any new C-C bonds.
3) Learn to recognize the Key Recognition Elements (KRE) in the product \rightarrow tells you what the final) reaction had to be.

$$
\begin{aligned}
& \text { New } \mathrm{C}-\mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& K R E \rightarrow \text { An alcohol group } 2 \\
& \text { carbons from a new } \\
& C-C \text { bond }
\end{aligned}
$$

$C-C$ bond

Synthesis Example

Functional groups such as carbonyl groups undergo characteristic reactions.

There are common themes \rightarrow the different reactions are variations on these themes

Protons and Lewis Acids react here
π bond acts
as a "psendo leaving group" and breaks when a nucleoghile reacts at the C aton

There are four common mechanisms seen when carbonyl compounds react with nucleophiles
\rightarrow We will call these Mechanism A-D

Here are the keys to understanding mechanisms in 320N!!

1) There are basically four different mechanisms elements that make up the steps of carbonyl reactions. A) Make a bond between a nucleophile and an electrophile
B) Break a bond to give stable molecules or ions
C) Add a proton
D) Take a proton away
2) These same four mechanism elements describe most of the other mechanisms you have/will learn!!! (Yes, organic chemistry really is this simple if you look at it this way!!)

There are basically four different mechanisms that describe the vast majority of carbonyl reactions and these mechanisms are different combinations/ordering of the four mechanism elements listed above. In this class, I have termed them "Mechanism A", "Mechanism B", "Mechanism C", and "Mechanism D". They all involve a nucleophile attacking the partially positively charged carbon atom of the carbonyl to create a tetrahedral intermediate. Different reaction mechanisms are distinguished by the timing of protonation of the oxygen atom as well as the presence or absence of a leaving group attached to the carbonyl.
Four Mechanisms for the Reaction of Nucleophiles with Carbonyl Compounds

All of these mechanisms have a tetrahedral intermediate

Mechanism $A \rightarrow$ Use this mechanism, with strong nucleophiles
\rightarrow 1) Make a bond
2) Add a proton

Grignard Reagent Reacting with an Aldehyde or Ketone

Key Recognition Element (KRE):
-OH group attached
the same C atom
as a new $C-C$ bond

$$
\begin{aligned}
& \searrow\left[\left(\mathrm{Br} \mathrm{M}_{3} \mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \mathrm{O}=-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right]^{\circ} \mathrm{O}\right.
\end{aligned}
$$

VOLUNTEER!

Tutoring Refugees to Understand English
T.R.U.E is a service organization that tutors English to refugees for one hour every week.

Lesson for Today:
"The Song"
Strong nucleophiles react directly at the electrophilic C atom of carbonyls to make a bond as the carbonyl π bond breaks. A proton is added to the O atom.
MECHANISM A!

Key Recognition Element (KRE):
-OH group attached
the same C abm
as a new $C-C$ bond

Alkyne Anion Reacting with an Aldehyde or Ketone

Mechanism A

Key Recognition Element (KRE):
OH group on the carbon that makes a new $C-C$ bond to an $s p C$ aton (alkyne)

Key Recognition Element (KRE):
Cyanohydrin \rightarrow OH on a C atom that made a new $C-C$ bond to $-C \equiv N$:

Time capsule \rightarrow cyanohydrins can be hydrolyzed in $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}$ to give α-hydroxyacids
This is getting boring.

It is time for a TWIST

Wittig Reaction

"Four-membered ring intermediate"
Key Recognition Element (KRE):
Alkene \rightarrow New $C=C$ where the $C=0$ was!
E vs. $Z \rightarrow$ Which product alkene?

1) With alky wittig reagents, the Z alkene product
predominates

2) When using Witting reagents that have a carbonyl) attached to the C atom that is bonded to the $P \oplus$ atom - E alkenes predominate

Detour -Hydrogenation of aldehydes and
ketones
H_{2} with $\mathrm{Pd}^{0}, \mathrm{Pf}^{0}$ or Ni° reduces aldehydes and ketones to alcohols \rightarrow the π bond reacts the same in $c=c$ and $c=0$

We now return to our regularly scheduled discussion
of Mechanism A

$$
\begin{array}{cc}
\text { Metal Hydride Reduction } \\
\hline \Rightarrow \text { Reduce } \mathrm{C}=0 \text { but not } \mathrm{C}=\mathrm{C} \\
\mathrm{Na}_{a}^{\oplus} \mathrm{H} \Theta & \mathrm{Li}_{i}^{\oplus}+ \\
\mathrm{H}-\mathrm{B}-\mathrm{H} & \mathrm{H}-\mathrm{A}-\mathrm{H} \\
\mathrm{H} & \mathrm{H} \\
\mathrm{NaBH}_{4} & \mathrm{LiAlH}_{4}
\end{array}
$$

How to think about the reagent:
"Hydride"
A Lewis Bose
$\begin{aligned} & \text { A Lewis } \\ & \text { acid }\end{aligned}$
You can think of NaBH
as a Lewis base-Lewis acid
complex between hydride (H^{ℓ})
and BH_{3}

Sodium Borohydride Reacting with an Aldehyde or Ketone

2) $\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}$
NaBH_{4}

new $C-C$ bond:
\uparrow
\square^{R} \uparrow

$$
R^{\prime} M
$$

1) $1^{\text {st }}: R-C \equiv C:^{\theta}+1^{0} R \cap B r$
2) $2^{\text {nd }}:$ organometalics + electiothile
N+N
