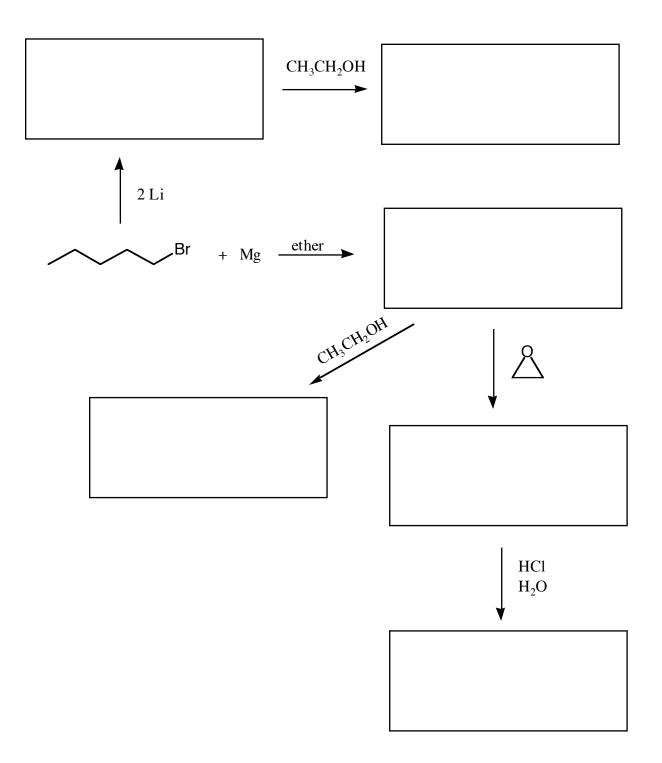
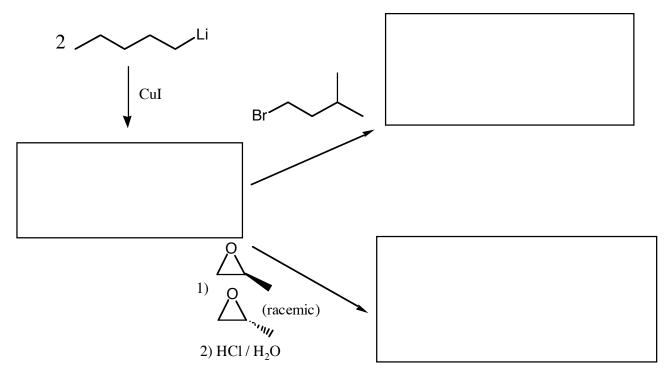
NAME (Print): _____

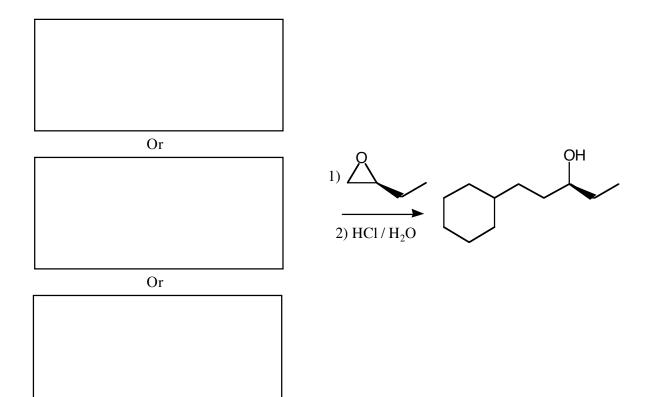
SIGNATURE: _____

Chemistry 310N Dr. Brent Iverson 3rd Homework February 1, 2008


Please print the first three letters of your last name in the three boxes

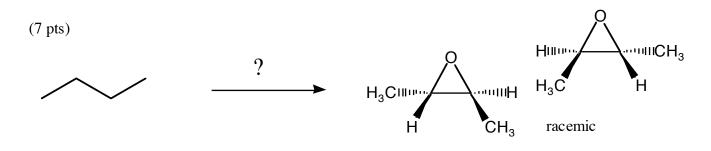
Score: _____


(1 pt each) Fill in each blank with the word that best completes the following descriptions of FT-NMR and MRI.


In the FT NMR method	, the FT stands for					
The basic idea is that a s	hort pulse using a range of	radio frequenc	ies are used to flip the spins of all of			
the hydrogen	the hydrogen at once. Then, the nuclear spins					
back to the $+1/2$ spin sta	te and when they do, they		electromagnetic radiation			
at the precise frequency	at which they absorb. The					
	(FT) analysis of the	e signals is use	d to derive the original frequencies			
characteristic of the reso	onancce of each type of H a	tom in the mole	ecule. The important advantage of			
the FT NMR method is	that many spectra can be ac	quired in a sho	rt period of time. The data is			
averaged, greatly increa	sing the	to	ratio of the spectra.			
			(i.e. resonance) of adio frequency irradiation when a			
patient is placed in a stre	ong	field.				
		gradients are us	ed to gain imaging information, and			
rotation of the gradient	around the	of the c	object gives imaging in an entire			
plane (i.e. slice inside p	atient).					
In an MRI image, you a	re looking at individual		that when stacked make			
up the three-dimensiona	l image of relative amounts	of	, especially those			
from	and	, in	the different tissues.			

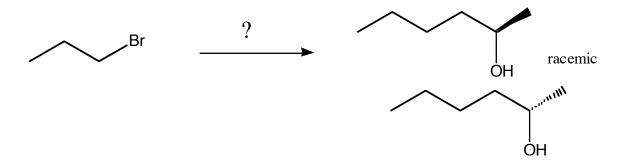
(3 or 5 pts each) Fill in the boxes with the structures that complete the reactions. Use wedges and dashes to indicate stereochemistry when appropriate. If a racemic mixture is formed, you must draw both enantiomers and write "racemic" next to the two structures.

(3 or 5 pts each) Fill in the boxes with the structures that complete the reactions. Use wedges and dashes to indicate stereochemistry when appropriate. If a racemic mixture is formed, you must draw both enantiomers and write "racemic" next to the two structures.

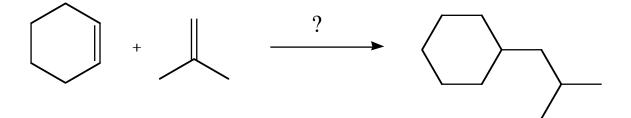

These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction.

Remember, when doing synthesis problems you should 1) count carbon atoms in the product and starting material(s), 2) work backwards and 3) RECOGNIZE key features of a molecule that help you predict the reaction used to construct it.

(10 pts)


?

These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stere ochemistry preferences for each reaction.


These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stere ochemistry preferences for each reaction.

(10 pts) All of the carbon atoms of the products must come from the starting material for this one!

These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction.

(12 pts) All of the carbon atoms of the products must come from the starting materials for this one!

