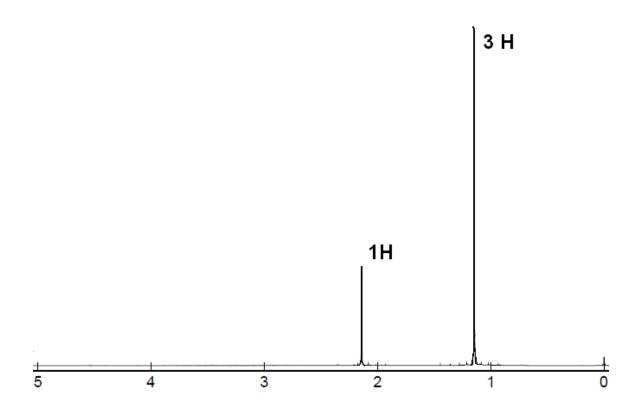
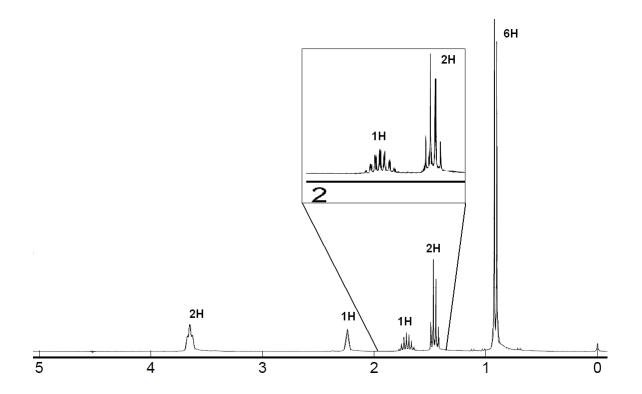
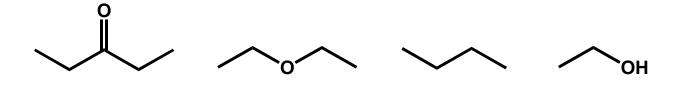
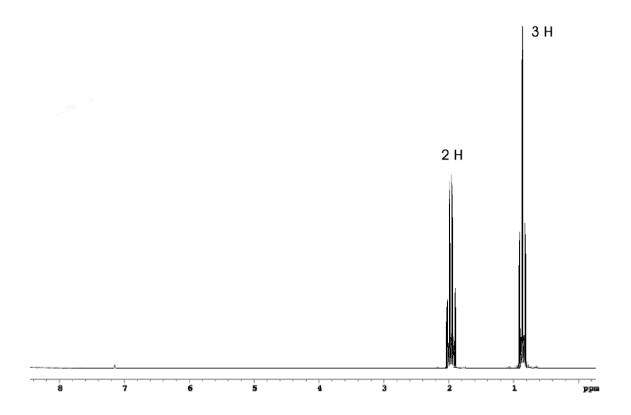
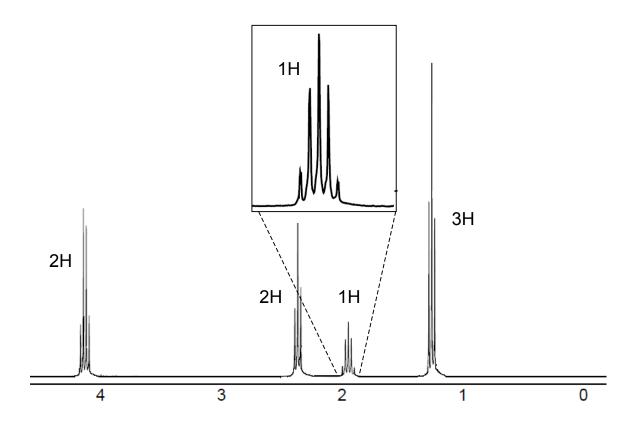

Homework 6 Organic Chemistry MCAT Review Summer 2012 Brent Iverson


| 1. Fill in each blank with the word that best com       | apletes the following sentences about       | NMR.            |
|---------------------------------------------------------|---------------------------------------------|-----------------|
| The two most important isotopes for organ               | ic chemistry structure determin             | ation by NMR    |
| are and Of these tw                                     | o, is a common isoto                        | pe and the      |
| predominant isotope found in molecules, w               | hile is relatively rare                     |                 |
| Nuclei with spin quantum number 1/2 are q               | quantized in one of two orientati           | ons:            |
| (lower energy) or (higher energy                        | ) in the presence of an external            | magnetic field, |
| that is, with and against the external field, r         | respectively.                               |                 |
|                                                         |                                             |                 |
| The difference in energy between nuclear s              | spin states is                              | to the          |
| strength of the magnetic field experienced l            | by the nucleus.                             |                 |
|                                                         |                                             |                 |
| Electron density is induced to move in a str            |                                             |                 |
| movement induces a                                      | field that is                               | _ to the        |
| external magnetic field. This has the effect            | of                                          | the underlying  |
| nuclei from the external magnetic field.                |                                             |                 |
|                                                         |                                             |                 |
| All other factors being the same, the signal            | for an <sup>1</sup> H atom with greater ele | ctron density   |
| around it will come at                                  | ppm in an NMR spectrum c                    | ompared to a    |
| similar <sup>1</sup> H atom with less electron density. |                                             |                 |
|                                                         |                                             |                 |
| The of adjacent nuclei is                               | nfluence each other. If <sup>1</sup> H atom | is are no more  |
|                                                         |                                             |                 |

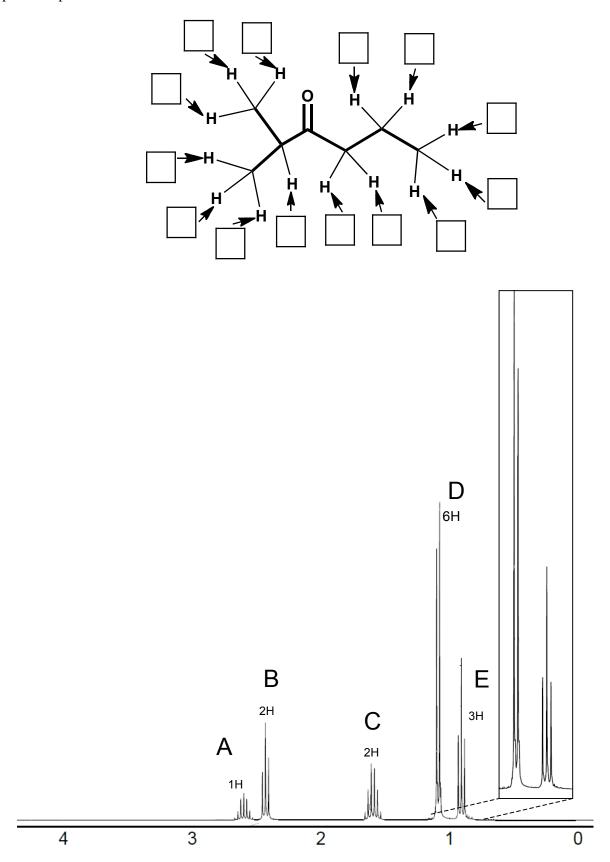

## 1. (cont.)


| In the FT NMR method, the    | ne FT stands for             |           |                              |
|------------------------------|------------------------------|-----------|------------------------------|
| The basic idea is that a sho | ort pulse using a range of i | radio fre | quencies is used to flip the |
| spins of all of the hydroge  | n a                          | it once.  | Then, the nuclear spins      |
|                              | back to the $+1/2$ spin stat | e and wl  | nen they do, they            |
|                              | electromagnetic radiation    | at the p  | recise frequency at which    |
| they absorb.                 |                              |           |                              |

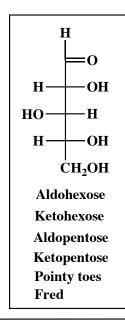

**2.** Suppose a relative of yours is having an MRI. In no more than four sentences, explain to them what is happening when they have the MRI scan. There are a minumum of 7 key points here.










**4.** In the boxes provided, place that letter (A, B, C, etc.) that corresponds to the signals in the spectrum provided below.

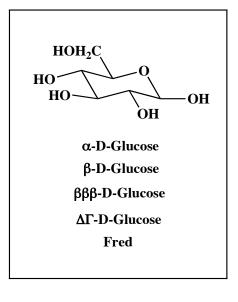


**5.** For the following structures, draw a circle around the terms that provide the most accurate description.

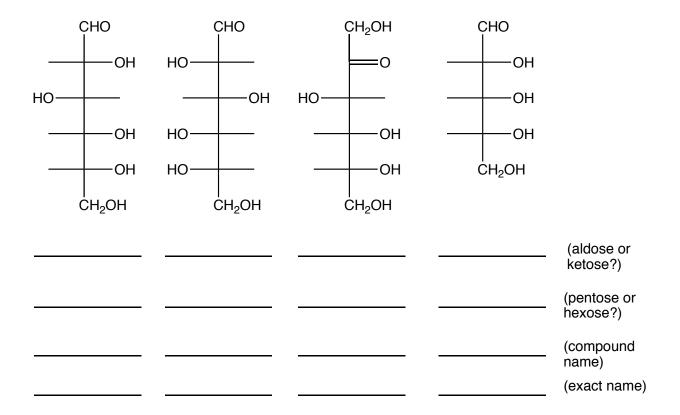


Monomeric carbon
Anomeric carbon
Polymeric carbon
Aldehyde carbon
Fred

HOH<sub>2</sub>C
HO
HO
OH
This structure is a:
Furanose
Pyranose
Comatose
Bloody nose
Fred


Aldopentose
Ketopentose
Pointy toes
Fred

HO
OH OH
This structure is a:
Furanose
Pyranose
Comatose
Bloody nose
Fred


This molecule is a:

Aldohexose

Ketohexose



**6.** For the following carbohydrates, draw a circle around all of the D-carbohydrate(s), and draw a rectangle around all of the L-carbohydrate(s). On the two first two lines below the four structures, indicate whether each is an aldose or ketose, and whether each is a pentose or hexose, respectively. On the third line below each structure, construct a compound name from all of these elements. For example, answers might be L-ketopentose or L-aldohexose. Finally, on the fourth line under each structure write the specific name (i.e. D-glucose) for each structure. You should use table 25.1 or other structures named in the book (5th Ed. Brown, Foote, Iverson and Anslyn) to identify these exact sugar names. (You will NOT need to know them for the MCAT).



$$HOH_2C$$
 $HO$ 
 $HO$ 
 $HOH_2C$ 
 $HO$ 
 $OH$ 
 $OH$ 

For the disaccharide of glucose on the left, draw a circle around any glucose residue that is/are a. Draw a box around any glucose residue that is/are b. Next, draw a box around the glyocosidic bond linkage. Finally, circle all anomeric carbon atoms.

**7.** Draw the two most important resonance contributing structures of the amide shown below. Be sure to show all lone pairs and formal charges. You do not have to draw arrows on this one.

**8.** On the lines, indicate the hybridization state of each atom indicated by the arrows.

9. On the following structure circle all of the C-N bonds that DO NOT ROTATE.

For the above stucture, is this the appropriate protonation state for pH 2.0, 7.0, or 10.0? Notice This