

Roadmap Reaction Legend

Reaction 6.1

- HX
- Markovnikov regiochemistry
- Mixed stereochemistry of addition
- Carbocation intermediate

Reaction 6.3

- \mathbf{X}_2
- Anti addition
- Halonium ion intermediate

Reaction 6.2 H_2O, H_2SO_4

- Markovnikov regiochemistry - Mixed stereochemistry of addition
- Carbocation intermediate

Reaction 6.4 $X_{2}, H_{2}O$

- Markovnikov regiochemistry (-OH on more substituted)
- Anti addition
- Halonium ion intermediate

<u>Reaction 6.5</u> 1. Hg(OAc)₂, H₂O 2. NaBH₄ - Markovnikov regiochemistry

- Mixed stereochemistry of addition

- Mercurinium intermediate

Reaction 6.7

1. OsO₄ **2.** NaHSO₃, H₂O - Syn addition - Cyclic osmate ester intermediate

Reaction 6.9

H₂, transition metal catalyst - *Syn addition*

Reaction 7.2

RC C: -- S_N2 reaction (see Section 9.2) - Must be primary haloalkane to avoid E2 - Makes a carbon-carbon bond

Reaction 7.4

2 X₂ - Adding only one equivalent of X₂ gives an (E)-dihaloalkene

Reaction 7.7a 1. BH₃ 2. H₂O₂, NaOH - Little regiochemical preference - Reaction involves enol formation followed by keto-enol tautomerism

Reaction 7.8 1. H₂O, H₂SO₄, HgSO₄ - Markovnikov regiochemistry for terminal alkynes - Reaction involves enol formation followed by keto-enol tautomerism

<u>Reaction 7.9b</u> H₂, Lindlar catalyst - Syn addition

- Great way to make (Z) alkene

Reaction 7.11

2Na° or 2Li° in NH₃ (*l*) - Radical mechanism involving two cycles of one electron reduction followed by protonation - Great way to make (E) alkene

 Reaction 8.1

 X2 and light or heat

 - X predominantly ends up on most substituted C atom, especially for Br2 (Hammond's postulate)

 - Radical chain mechanism

Reaction 8.4

- HBr and peroxides
- Non-Markovnikov regiochemistry
- Mixed stereochemistry of addition

- Radical chain mechanism

Reaction 6.6 1. BH₃ 2. H₂O₂, NaOH

- Non-Markovnikov regiochemistry

- Svn addition
- Four-membered ring transition state

Reaction 6.8

1. O₃ 2. (CH₃)₂S - Complex mechanism involving malozonide and ozonide intermediates - Cleavage of C=C bond

Reaction 7.3

2 NaNH₂ in NH₃ (*l*) - Last step in converting an alkene into an alkyne through a vicinal dihaloalkane - 3 NaNH₂ followed by protonation for terminal alkyne

Reaction 7.5

2 HX - Markovnikov regiochemistry (with terminal alkynes) - Adding only one equivalent of HX gives a haloalkene

Reaction 7.7b 1. (sia)₂BH 2. H₂O₂, NaOH

 Non-Markovnikov regiochemistry for terminal alkynes
 Reaction involves enol formation followed by keto-enol tautomerism

Reaction 7.9a

2H₂, **transition metal catalyst** - *Reaction does not stop at the alkene but continues on to the alkane*

Reaction 7.10 1. R₂BH 2. Protonolysis (i.e. CH₃CO₂H)

- Can give Markovnikov regiochemistry depending on R

- Syn addition

- Alternative way to make (Z) alkene

<u>Reaction 8.2</u> NBS and light or heat

- Br adds to any of the possible allylic C atoms to make the most stable alkene (most substituted alkene and trans if relevant) Badied shain makening involving an allylic radied intermediate

- Radical chain mechanism involving an allylic radical intermediate

Reaction 9.1

Various nucleophiles

- Inversion of configuration of chiral haloakanes - $S_{\rm N}2$ reaction mechanism in which the nucleophile attacks the backside of the carbon-leaving group bond

- $S_N I$ mechanism (reaction 9.2) involving a carbocation intermediate can occur with hindered starting materials and weakly basic nucleophiles, usually mixed with E1

Reagents for individual substitution reactions:

Reaction 9.1a: H₂S, HS

Reaction 9.1c: RC C: - (new C-C bond)

Reaction 9.1e: R2NH (R can be H)

Reaction 9.1g: H₂O, HO

Reaction 10.3

HX

- Mixed stereochemistry of substitution - Primary alcohols react via S_N2, tertiary alcohols react via S_N1 and secondary alcohols react via a combination of S_N2and S_N1 mechanisms

Reaction 10.5 SOCl₂ and SOBr₂

- Inversion of configuration at chiral alcohols - Alkyl chlorosulfite or alkyl bromosulfite intermediate

Reaction 10.8

 H_2CrO_4/H_2O

 Primary alcohols react to give carboxylic acids
 Aldehyde intermediate is formed that then adds water and the resulting geminal diol is oxidized further

<u>Reaction 10.10</u> PCC (pyridinium chlorochromate)

- Primary alcohols react to give aldehydes

- There is no water in the reagent so the

aldehyde cannot hydrate

- Secondary alcohols react to give ketones

Reaction 11.1 RO⁻

- Williamson ether synthesis

- Primary alcohols react via S_N2

- E2 reaction predominates for secondary or tertiary haloakanes

<u>Reaction 11.4</u> HBr or HI

- Cleavage of primary or secondary alkyl ethers is by an $S_N 2$ pathway while tertiary alkyl ethers is by an $S_N 1$ pathway

Reaction 11.6 RCO₃H such as MCPBA

- Mechanism involves a single concerted step with a cyclic transition state

Reaction 9.4

Base (Often RO)

Zaitsev's rule predicts the predominant product (most highly substituted favored, trans favored over cis)
E2 reaction mechanism involving an anti and coplanar transition state

- E1 mechanism (reaction 9.3) involving a carbocation intermediate can occur with hindered starting materials and weakly basic nucleophiles, usually mixed with $S_{\rm N}1$

Reaction 9.1b: RSH, RS

Reaction 9.1d: NC (new C-C bond)

Reaction 9.1f: N₃

Reaction 9.1h: ROH, RO

Reaction 10.4

PBr₃

- Inversion of configuration at chiral alcohols

- Protonated dibromophosphite intermediate

Reaction 10.6 H₃PO₄

- Usually follows Zaitsev's rule

- Mechanism is reverse of acid catalyzed hydration

- Rearrangements are common with secondary alcohols

and primary alcohols with β -branching

Reaction 10.9

H₂CrO₄ / H₂O - Secondary alcohols react to give ketones

Reaction 10.11 HIO₄

- Vicinal diols (glycols) react to cleave the carboncarbon bond between the hydroxyl groups with oxidation to give aldehydes or ketones

Reaction 11.3

ROH, acid catalyst

- Markovnikov regiochemistry
- Carbocation intermediate

Reaction 11.5

t-BuMe₂SiCl

- The tert-butyldimethylsilyl ether is a hydroxyl protecting group cleaved with the fluoride anion

Reaction 11.7 NaOH / H₂O

- Configuration of the halohydrin determines stereochemistry of the epoxide

- Mechanism involves deprotonation of the hydroxyl group followed by internal $S_N 2$ reaction on backside of C-X bond

Reaction 11.9

H₂O in acid or HO

- H_2O in acid reacts at more substituted carbon (Markovnikov regiochemistry) via an oxonium ion intermediate

- HO^{-} reacts at the less hindered carbon via $S_N 2$

- Both reactions give exclusively trans diol products

Reaction 11.11

1. LiAlH₄ 2. H₂O

- Hydride transfers to the less hindered carbon atom via S_N^2 - The H atom and OH end up exclusively trans to each other

Reaction 11.10

\mathbf{NH}_3

- NH_3 reacts at the less hindered carbon via $S_N 2$

- Reaction gives exclusively trans aminoalcohol products