

Roadmap Reaction Legend

Reaction 15.3

- 1. Mg° in ether 2. An epoxide 3. Mild acid - Grignard reagent - Carbon acts as a nucleophile and reacts at the least hindered carbon of the epoxide - Makes a new C-C bond
- Reaction 15.6

CHX₃ and KOtBu

- Works if X=Cl or Br
- Reaction involves a dihalocarbene intermediate
- Makes two C-C bonds

Reaction 16.1

1. RMgX 2. HCl, H₂O - The Grignard reagent attacks the electrophilic carbonyl C atom to create an allkoxide intermediate - The chemist adds mild acid to give the alcohol - Makes a new C-C bond

Reaction 16.3

1. \mathbb{RC} **C: 2.** \mathbb{HCl} , $\mathbb{H}_2\mathbb{O}$ - The alkyne anion attacks the electrophilic carbonyl C atom to create an allkoxide intermediate - The chemist adds mild acid to give α -hydroxyalkyne - Makes a new C-C bond

Reaction 15.5

- (R)₂CuLi
- Gilman reagent
- The Gilman reagent is made from two equivalents
- of an alkyl lithium reacting with Cul
- Makes a new C-C bond

Reaction 15.7

- CH₂I₂ and Zn(Cu)
- The Simmons-Smith reaction
- Reaction involves formation of an organozinc reagent
- Makes two C-C bonds

Reaction 16.2

1. RLi 2. HCl, H₂O

- The organolithium reagent attacks the electrophilic carbonyl C atom to create an allkoxide intermediate - The chemist adds mild acid to give the alcohol

- Makes a new C-C bond

Reaction 16.4

HCN / NaCN

- The cyanide anion attacks the electrophilic
- carbonyl C atom to create an allkoxide intermediate
- HCN protonates the alkoxide to give the cyanohydrin
- Makes a new C-C bond

Reaction 16.5

$RHC^{-}P^{+}(Ph)_{3}$ (a phosphonium ylide)

- The Wittig reaction

- Ylides with anion stabilizing groups are
- E-selective, non-stabilized ylides are Z-selective
- Four-membered ring oxaphosphetane intermediate
- Makes a new C=C bond

Reaction 16.8 ROH and acid

- Carbonyl is protonated, facilitating attack of alcohol - Hemiacetals are not stable unless they are cyclic

- Hemiacelais are not stable unless they are cyclic

Reaction 16.10

RNH₂ and weak acid - Primary amines react with the carbonyl to give a tetrahedral addition intermediate that adds a proton and loses water to make an imine

Reaction 16.15

1. NaBH₄ or LiAlH₄ **2.** H₂O - The hydride attacks the electrophilic carbonyl C atom to give a tetrahedral addition intermediate that adds a proton to give the alcohol product - Will not reduce C=C bonds

Reaction 16.17

RNH₂ and NaBH₃CN - Reductive amination - Initially formed imine is reduced to an amine by the NaBH₃CN

Reaction 16.19

H₂NNH₂ and KOH
Wolff-Kishner reduction
The hydrazine reacts with the carbonyl to give a hydrazone that is deprotonated in base and loses N₂.
This reaction is useful when the other functional groups present are stable to base

Reaction 17.3

1. Mg, ether 2. CO₂ 3. HCl, H₂O - The Grignard reagent attacks the electrophilic CO₂ carbonyl C atom to create a carboxylate intermediate - The chemist adds mild acid to give the alcohol - Makes a new C-C bond and adds one carbon atom

Reaction 17.6

ROH and catalytic H₂SO₄ - The acid catalyst protonates the carboxylic acid facilitating attack by the ROH - The reaction is reversible

Reaction 17.8

SOCl₂

- Similar mechanism to conversion of alcohol into a chloroalkane

- Important reaction for generating a highly reactive derivative of a carboxylic acid

Reaction 18.3

H_2O

 The hydrolysis reaction occurs spontaneously and does not need acid or base catalysis
 The mechanism involves direct attack of H₂O

at the electrophilic carbonyl carbon atom

Reaction 16.6

O O (CH₃O)₂PCH₂COR / Base

- Horner-Emmons-Wadsworth modification of Wittig reaction
- Starting reagent is derived from trimethylphosphite
- reacting with an α -haloester
- Highly E-selective
- Makes a new C=C bond

Reaction 16.9

ROH and acid - Hemiacetals can react with another hydroxyl group to make the more stable acetal

<u>Reaction 16.11</u>

 R_2NH and weak acid - Secondary amines react with the carbonyl to give a tetrahedral addition intermediate that adds a proton and loses water to make an enamine

Reaction 16.16

H₂ and transition metal - Pt or Ni are often used - This reaction will also reduce a C=C

Reaction 16.18

Zn(Hg) and HCl

Clemmensen reduction
The reaction is useful when the other functional groups present are stable to acid

<u>Reaction 16.21</u>

Br₂ and CH₃CO₂H

- Bromination occurs on the enol form of the ketone or aldehyde

Reaction 17.5

1. $LiAlH_4$ 2. H_2O

- The carboxylic acid is reduced all the way to an alcohol

- NaBH₄ is not strong enough to use for this reaction

Reaction 17.7

- CH_2N_2
- Very efficient reaction for preparation of methyl esters
- Warning, diazomethane is an explosive and toxic gas

- Reaction 18.4 H₂O
- The hydrolysis reaction occurs spontaneously
- and does not need acid or base catalysis
- The mechanism involves direct attack of H_2O
- at the electrophilic carbonyl carbon atom

Reaction 18.5

H₂O with acid or base - The reaction in acid requires only a catalytic amount of acid and involves an initial protonation of the carbonyl group followed by water attack - The reaction in base requires one equivalent of HO⁻ and involves an initial attack of HO⁻ on the carbonyl carbon

Reaction 18.7

H₂O with acid or base

The reaction in acid requires one equivalent of of acid and involves an initial protonation of the nitrile carbon atom followed by water attack
The reaction in base requires one equivalent of HO⁻ and involves an initial attack of HO⁻ on the nitrile carbon that leads to an amide.

Reaction 18.9 ROH

- The reaction does not need acid or base and involves an initial protonation attack of the carbonyl carbon atom by the alcohol O atom

Reaction 18.12

2 R₂NH, R can be H - The mechanism involves attack of the amine on the carbonyl carbon atom - The second equivalent of amine is protonated during the reaction

Reaction 18.14 RCO₂⁻ - The mechanism involves attack of the carboxylate on the carbonyl carbon atom

Reaction 18.16

1. R₂CuLi **2.** H₂O - This reaction stops at the ketone - Makes new C-C bond

Reaction 18.17b

1. DIBALH 2. HCl, H₂O - The reaction cleaves the ester but stops at the aldehyde

Reaction 18.19

1. LIAIH₄ 2. H₂O - The reaction does not cleave the nitrile, it reduces it to a primary amine - The mechanism involves attack of hydride anion on the nitrile carbon atom

Reaction 18.6

H₂O with acid or base

- The reaction in acid requires one equivalent of of acid and involves an initial protonation of the carbonyl group followed by water attack The reaction in base requires one equivalent of HO⁻ and involves an initial attack of HO⁻ on the carbonyl carbon

Reaction 18.8 ROH

- The reaction does not need acid or base and involves an initial protonation attack of the carbonyl carbon atom by the alcohol O atom

<u>Reaction 18.11</u>

2 R₂NH, R can be H
The mechanism involves attack of the amine on the carbonyl carbon atom
The second equivalent of amine is protonated during the reaction

Reaction 18.13

R₂NH, R can be H - The mechanism involves attack of the amine on the carbonyl carbon atom - The reaction can require heating

Reaction 18.15 1.2 RMgX 2. HCl, H₂O

- The product tertiary alcohol has two identical R groups - The mechanism involves formation of a ketone that is then attacked by the second equivalent of Grignard reagent Makes new C-C bond

<u>Reaction 18.17a</u> 1. LiAlH₄ 2. HCl, H₂O

- The reaction cleaves the ester and makes two alcohols - The mechanism involves attack of hydride anion on the carbonyl carbon atom

Reaction 18.18

1. LiAlH₄ 2. H₂O

The reaction does not cleave the amide, it reduces the carbonyl group all the way to methylene.
The mechanism involves attack of hydride anion on the carbonyl carbon atom followed by loss of the O atom attached

to the Lewis acidic Al atom