

Roadmap Reaction Legend

Reaction 20.1

HX - Gives 1,2 addition at lower temperatures under kinetic control in which most rapidly formed

product predominates - Gives 1,4 addition at higher temperature under thermodynamic control in which the reaction is a

equilibrium and most stable product predominates

Reaction 21.3

1. CO₂, H₂O **2.** HCl, H₂O - The Kolbe synthesis - The phenoxide anion adds to carbon dioxide followed by keto-enol tautomerism - Makes a new C-C bond

Reaction 21.5

H₂CrO₄ - A benzylic carbon bonded to at least one hydrogen atom is oxidized all the way to a carboxylic acid

Reaction 20.2

A dienophile such as an electron deficient alkene

- The Diels-Alder reaction

- Concerted 1 step mechanism
- The configuration of the diene and dienophile (cis vs. trans)
- are conserved
- Endo product predominates
- Makes two new C-C bonds

Reaction 21.4

H₂CrO₄

- Gives 1,2 quinones or 1,4 quinones depending on the phenol

Reaction 21.6

NBS

- Halogenation is specific for the benzylic position
- Occurs by a radical chain mechanism

Reaction 22.1 X₂, FeX₃ - The X₂ reacts with the Lewis acid FeX₃ to give the electrophile X⁺

Reaction 22.3 SO₃ - The electrophile is either SO₃ or HSO₃⁺ depending on conditions

Reaction 22.5

R CI, AICI₃ - Friedel-Crafts acylation - The acid chloride reacts with AICI₃ to give the acylium ion electrophile - Makes a new C-C bond

Reaction 22.7 Alcohol, Brønsted or Lewis acid - The alcohol reacts with the Brønsted or Lewis acid to give a carbocation electrophile - Makes a new C-C bond

Reaction 22.10ReactionH2, Ni or other transition metal1. H9- This converts a nitro group into a primary- Thisaryl amine making it a very useful reactionamine- These conditions also reduce alkenes or other- Thesusceptible groupsusing a strong base treatment in the second step

Reaction 23.5 RNH₂ or NH₃ - This methods is seldom used because of overalkylation

Reaction 23.10 HNO₂ - Treating a cyclic vicinal amino alcohol with HNO₂ gives ring expansion and a ketone

Reaction 23.12 H₂O, heat - Important method for creating phenols

Reaction 23.14

CuCN, KCN - The Sandmeyer reaction - Also works with CuCl and CuBr to give aryl halides

Reaction 23.16 H₃PO₂ - Important method for removing nitrogen from an aryl ring Reaction 22.2 HNO₃, H₂SO₄

- The electrophile is NO_2^+ formed by the reaction of HNO_3 with H_2SO_4

Reaction 22.4

- R-X, AlCl₃
- Friedel-Crafts alkylation - The haloalkane reacts with the Lewis acid AlCl₃ to
- give the carbocation electrophile
- Rearrangements can be a problem
- Makes a new C-C bond

Reaction 22.6

Alkene, Brønsted or Lewis acid

The alkene reacts with the Brønsted or Lewis acid to give a carbocation electrophile
Makes a new C-C bond

Reaction 22.8

NaNH₂, NH₃(*l*) - The strong base causes an elimination reaction to give a benzyne intermediate followed by addition of NH₂:

Reaction 22.11

1. HCl, FeCl₃, 2. NaOH - This converts a nitro group into a primary aryl amine making it a very useful reaction - The initially formed salt is converted to the amine d sten

Reaction 23.6 1. KN₃ **2.** H₂O **3.** LiAlH₄ **4.** H₂O - The azide anion reacts with an epoxide to give a vicinal azido alcohol with anti stereochemistry, that is reduced by the LiAlH₄ to give a vicinal amino alcohol

Reaction 23.11 HNO₂, HCl - Important method because it converts an aniline to the highly reactive arenediazonium - The key reactive intermediate is HONO

Reaction 23.13

- HBF₄ - The Schiemann reaction
- Important method for creating aryl fluorides

Reaction 23.15

KI
- Important method for creating aryl iodides

Reaction 23.17

Conversion to ammonium hyroxide, heat

- The Hoffman elimination

- Anti stereoselective elimination of quaternary ammonium hydroxides occurs preferentially to form the least substituted carbon-carbon double bond (Hofmann's rule) **<u>Reaction 23.18</u> Conversion to amine oxide, heat** - The Cope elimination - Elimination is syn stereoselective and involves a cyclic flow of six electrons in a planar transition state