Iverson CH 320N KRE Table 3: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new bonds, especially C-C or C=C bonds. With that information, use the following KREs to determine which reactions are appropriate.

KRE: A β-diketone indicates reaction of an acid chloride with either an enolate made with LDA or using an enamine.

KRE: A methyl ketone with substitution at the α-carbon indicates an acetoester synthesis. The second new C-C bond indicates a second alkylation with CH₃Br.

KRE: A carboxylic acid with substitution at the α-carbon indicates a malonic ester synthesis.

KRE: This is a very tricky one. A symmetric ketone indicates a Claisen reaction followed by ester hydrolysis and decarboxylation of the resulting β-ketoester.

KRE: A new six-membered ring with two new C-C bonds and an α,β-unsaturated ketone indicates a Robinson reaction.