Write the predominant product or products that will occur for each transformation. **If a new chiral center is created and a racemic mixture is formed, you must draw both enantiomers and write "racemic" under the structure. Use wedges and dashes to indicate stereochemistry. To get full credit, you only need to write the major organic product for these. You do not have to worry about the other products.** For C, D, F and H, please provide the reagents you used to realize that transformation.

1. **O**
 1. 0.5 Eq. NaOEt
 2. mild H$_2$O$^+$

2. **O**
 1. Catalytic NaOH
 2. H$_2$O$^+$ heat

3. **O**
 1. 1.0 eq. NaOEt
 2. Br
 3. H$_3$O$^+$ (very strong acid with heat)
 4. More heat

4. **O**
 1. 1.0 eq. LDA
 2. O
 3. Cl
10. (2 pts each) In each of the boxes over an arrow, write the minimum number of equivalents of the specified reagent required to carry out the reaction shown to completion. If only a catalytic amount is needed, write "CAT". Note: You must assume the carbonyl compound starting material is initially present in an amount of 1.0 equivalent.

A) \(\text{carboxylic acid} \quad \text{cat} \quad \text{equivalents } \text{HO}^+\text{Na}^- \rightarrow \text{alcohol} \quad \text{(racemic)} \)

B) \(\text{ester} \quad 1) \quad 0.5 \text{ equivalents } \text{CH}_3\text{O}^-\text{Na}^- \quad 2) \quad \text{mild } \text{H}_2\text{O}^+ \rightarrow \text{ester} \quad \text{(racemic)} \)

C) \(\text{ester} \quad 1) \quad 1.0 \text{ equivalents } \text{LDA} \rightarrow \text{ester} \quad \text{(racemic)} \)

D) \(\text{ester} \quad 1) \quad 0.5 \text{ equivalents } \text{LDA} \quad 2) \quad \text{mild } \text{H}_2\text{O}^+ \rightarrow \text{ester} \quad \text{(racemic)} \)

E) \(\text{aldehyde} \quad 1) \quad 1.0 \text{ equivalents } \text{LDA} \quad 2) \quad 1.0 \text{ equivalents } \text{phenylacetaldehyde} \quad 3) \quad \text{mild } \text{H}_2\text{O}^+ \rightarrow \text{ester} \quad \text{(racemic)} \)

F) \(\text{aldehyde} \quad \text{2.0 equivalents } \text{NH}_2 \rightarrow \text{amine} \quad \text{ammonium} \)

G) \(\text{ester} \quad \text{excess } \text{H}_2\text{O} \quad \text{cat} \quad \text{equivalents } \text{H}_2\text{SO}_4 \rightarrow \text{ester} \quad \text{anhydride} \)

H) \(\text{ester} \quad 1) \quad 1.0 \text{ equivalents } \text{LDA} \quad 2) \quad \text{mild } \text{H}_2\text{O}^+ \rightarrow \text{ester} \quad \text{(racemic)} \)
12. (23 pts) Complete the mechanism for the following Claisen reaction. Be sure to show arrows to indicate movement of all electrons, write all lone pairs, all formal charges, and all the products for each step. Remember, I said all the products for each step. IF A NEW CHIRAL CENTER IS CREATED IN AN INTERMEDIATE OR PRODUCT, MARK IT WITH AN ASTERISK AND LABEL THE MOLECULE AS RACEMIC IF APPROPRIATE. In the boxes provided, write which of the 4 mechanistic elements describes each step (make a bond, break a bond, etc.).
11. (23 pts) Complete the mechanism for the following Dieckmann reaction. Be sure to show arrows to indicate movement of all electrons, write all lone pairs, all formal charges, and all the products for each step. Remember, I said all the products for each step. IF A NEW CHIRAL CENTER IS CREATED IN AN INTERMEDIATE OR THE PRODUCTS, MARK IT WITH AN ASTERISK AND LABEL AS "RACEMIC" IF RELEVANT. IN THE BOX BY EACH SET OF ARROWS, WRITE WHICH OF THE 4 MECHANISTIC ELEMENTS IS INDICATED IN EACH STEP OF YOUR MECHANISM (For example, "Add a proton").
14. (19 pts) Using any reagents turn the starting material into the indicated product. All carbon atoms must come from the starting material. Draw all molecules synthesized along the way. When in doubt, draw the molecule! Label all chiral centers with an asterisk (*) and make sure to right "Racemic" where appropriate.

Remember, all of the carbons of the product must come from the given starting material.
17. (cont. 10 pts) Using any reagents turn the starting material into the indicated product. All carbon atoms must come from the starting material. Draw all molecules synthesized along the way. When in doubt, draw the molecule! Label all chiral centers with an asterisk (*) and make sure to right "Racemic" where appropriate.

Remember, all of the carbons of the product must come from the given starting material.