1. Below, circle all the molecules that can be called aromatic. (Do not make any mark on, around, or beside any molecule below that cannot be considered aromatic.)

2. For each pair of molecules, circle the one that is more acidic.

A. \[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\] or
\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

B. \[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\] or
\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

C. \[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\] or
\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

D. \[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\] or
\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

E. \[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\] or
\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]
12. (18 pts) Complete the mechanisms below that shows how HBr adds to a conjugated diene to give both 1,2 addition and 1,4 addition. Use arrows to show the movement of all electrons, and be sure to draw all lone pairs of electrons and all formal charges. If a racemic product is formed, just put an asterisk (*) next to the chiral center and write "racemic" under it.

![Mechanism Diagram]

Notice this:

(4 pts) Draw a circle around the product you drew that will predominate when the reaction is run under conditions of thermodynamic control.
15. Using any reagents turn the starting material into the indicated product. All the carbons in the product must come from the given starting material or starting materials. Draw all molecules synthesized along the way. When in doubt, draw the molecule!

B) (16 pts)

\[
\begin{align*}
\text{Starting Material} & \xrightarrow{?} \text{Product} \\
\end{align*}
\]
15. Using any reagents turn the starting material into the indicated product. All the carbons in the product must come from the given starting material or starting materials. Draw all molecules synthesized along the way. When in doubt, draw the molecule!

C) (16 pts)

\[
\begin{align*}
\text{starting material} & \rightarrow ? \\
\text{product} &
\end{align*}
\]
10. (3 or 5 pts each) For the following reactions, draw the predominant product or products. When a new chiral center is created, mark it with an asterisk (*) and if a racemic mixture is produced, you must write “racemic” under your structure. If an E/Z mixture is produced as the result of a dehydration step, write “E,Z mixture”, but you only have to draw one isomer, not both. These directions are different than you may have seen before, and are intended to make it easier for you. You should read them again so you know what we want.

E) [Diagram]

1. 1.0 Eq. NaOEt
2. Br

F) [Diagram]

1. Catalytic NaOH
2. [Chemical Reaction]
3. H₂O

(assume dehydration takes place)

G) [Diagram]

1. Catalytic NaOH
2. H₂O

(assume dehydration takes place)
14. (10 pts) Using any reagents turn the starting material into the indicated product. All carbon atoms must come from the starting material. Draw all molecules synthesized along the way. When in doubt, draw the molecule! Label all chiral centers with an asterisk (*) and make sure to right "Racemic" where appropriate.

Remember, all of the carbons of the product must come from the given starting material.